数学物理学报 ›› 2012, Vol. 32 ›› Issue (5): 861-878.

• 论文 • 上一篇    下一篇

一类奇异项依赖于梯度的奇异偏微分方程的研究

运东方|黄淑祥*   

  1. 山东大学数学学院 济南 |250100
  • 收稿日期:2011-09-19 修回日期:2012-06-20 出版日期:2012-10-25 发布日期:2012-10-25
  • 通讯作者: 黄淑祥,huangs@sdu.edu.cn E-mail:yundongfang005@gmail.com; huangs@sdu.edu.cn

On a Class of Singular Equations with Nonlinear Terms Depending on the Gradient

 YUN Dong-Fang, HUANG Shu-Xiang*   

  1. School of Mathematics, Shandong University, Jinan 250100
  • Received:2011-09-19 Revised:2012-06-20 Online:2012-10-25 Published:2012-10-25
  • Contact: HUANG Shu-Xiang,huangs@sdu.edu.cn E-mail:yundongfang005@gmail.com; huangs@sdu.edu.cn

摘要:

研究一类奇异偏微分方程, 其中奇异项依赖于梯度: ∂u/∂t-Δu=-μ|\nabla u|l/μm+f(x, t), (x, t)∈Ω×(0, T],  并且u|∂Ω×(0, T]=0, u(x, 0)=φ(x ∈Ω). 其中Ω 是RN 的边界具有C2 光滑性的有界开区域, 0<T≤+∞, μ> 0, 1<m+1≤l<2 或 0<m<l=2. 称-Δu=-μ |\nabla u|l/um+f(x) (x∈Ω), u|∂Ω=0 为前面奇异问题的平衡解问题. 在对fφ某些条件下该文证明了这两个问题的正经典解的存在唯一性, 分别记为u, v. 其次, 提出了几个假定条件, 在这些条件下证明了limt→+∞u 是平衡解问题的正经典解, 即limt→+∞u =v.

关键词: 存在性, 惟一性, 奇异, 上下解, 一致收敛, 平衡解

Abstract:

In this paper, we consider a class of singular equations depending on quadratic gradient term in the form ∂u/∂t-Δu=-μ|\nabla u|l/μm+f(x, t), (x, t)∈Ω×(0, T],  with zero boundary and nonnegative initial conditions, where Ω is a bounded subset of RN with ∂Ω of C2 class, T>0 and μ>0, parameters 1<m+1≤l ≠ 2 or 0<m<l=2, the datum f and initial condition φ are both nonnegative functions satisfying some assumptions. We call problem -Δuμ |\nabla u|l/um+f(x) in Ω, u|∂Ω=0, is its stationary problem. First, we prove the existence and uniqueness of positive classical solutions of these two problems, denoted by u, v respectively. Secondly, under some assumptions, we prove limt→+∞u
=v is a positive classical solution of the stationary problems.

Key words: Existence, Uniquencess, Singular, Stationary, Uniform convergence

中图分类号: 

  • 35A05