[1] Fujii M, Kamei E. Mean theoretic approach to the grand Furuta inequality. Amer Math Soc, 1996, 124: 2751--2756
[2] Furuta T. A≥B≥0 assures (BrApBr)1/q>Bp+2r/q for r≥0, p≥0, q≥1 with (1+2r)q≥p+2r. Proc Amer Math Soc, 1987, 101: 85--88
[3] Furuta T. Two operator functions with monotone property. Proc Amer Math Soc, 1991, 111: 511--516
[4] Furuta T. Extension of the Furuta inequality and Ando-Hiai Log majorization. Linear Algebra and Its Appl, 1995, 219: 139--155
[5] Furuta T. Simplified proof of an order preserving operator inequality. Proc Japan Acad, 1998, 74: 114
[6] Furuta T. Invitation to Linear Operators. London: Taylor and Francis, 2001,
[7] Furuta T, Hashimoto M, Ito M. Equivalence relation between generalized Furuta inequality and related operator functions. Scientiae Mathematicae, 1998, 1: 257--259
[8] Furuta T. Monotonicity of order preserving operator functions. Linear Alg and Its Appl, 2008, 428: 1072--1082
[9] Furuta T. Further extension of an order preserving operator inequality. J Math Inequal, 2008, 2(4): 465--472
[10] Furuta T, Wang D. A decreasing operator function associated with the Furuta inequality. Proc Amer Math Soc, 1998, 126: 2427--2432
[11] Furuta T, Yanagida M, Yamazaki T. Operator functions implying Furuta inequality. Math Inequal Appl, 1998, 1: 123--130
[12] Heinz E. Beitr"age zur St"orungsteorie der Spektralzerlegung. Math Ann, 1951, 123: 415--438
[13] Kamei E. A sattelite to Furuta's inequality. Math Japon, 1988, 33: 883--886
[14] L"owner K. Über monotone MatrixFunktionen. Math Z, 1934, 38: 177--216
[15] Tanahashi K. Best possibility of Furuta inequality. Proc Amer Math Soc, 1996, 124: 141--146
[16] Yanagida M. Some applications of Tanahashi's result on the best possibility of Furuta inequality. Math Inequal Appl, 1999, 2: 297--305
[17] Yamazaki T. Simplified proof of Tanahashi's result on the best possibility of generalized Furuta inequality. Math Inequal Appl, 2000, 2: 473--477
[18] Yuan J, Gao Z. Complete form of Furuta inequality. Proc Amer Math Soc, 2008, 136: 2859--2867 |