[1] Hammons A R, Kumar Jr P V, Calderbank A R, et al. The Z4 linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans Inform Theory, 1994, 40: 301--319
[2] Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: performance criterion and construction. IEEE Trans Inform Theory, 1998, 44: 744--765
[3] Liu Y, Fitz M P, Takeshiti O Y. A rank criterion for QAM space-time codes. IEEE Trans Inform Theory, 2002, 48: 3062--3079
[4] Gamal H EI, Hammons A R, Liu Jr Y, et al. On the design of space-time and space-frequency codes for MIMO frequency-selective fading channels. IEEE Trans Inform Theory, 2003, 49: 2277--2292
[5] Dinh H Q, LÖpez-Permouth S R. Cyclic and negacyclic codes over finite chain rings. IEEE Trans Inform Theory, 2004, 50: 1728--1744
[6] Kanwar P, LÓpez-Permouth S R. Cyclic codes over the integers modulo pm. Finite Fields and Their Applications, 1997, 44: 334--352
[7] Qian J F, Zhang L N, Zhu S X. Constantacyclic and cyclic codes over F2+uF2+u2F2. IEICE Trans on Fundamentals, 2006, E89-A: 1863--1865
[8] Shi M J, Zhu S X. Cyclic codes over the ring Zp2 of length pe. Journal of Electronics (China), 2008, 25: 636--640
[9] Dougherty S T, Shiromoto K. MDR codes over Zk. IEEE Trans Inform Theory, 2000, 46: 265--269
[10] Dougherty S T, Harada M, Solé P. Self-dual codes over rings and the Chinese remainder theorem. Hokkaido Math Journal, 1999, 28: 253--283
[11] Park Y H. Modular independence and generator matrices for codes over Zm. Des Codes and Cryp, 2009, 50: 147--162
[12] Zhu S X, Shi M J. The rank of cyclic and negacyclic codes over the finite ring R. Journal of Electronics (China), 2008, 25: 97--101
[13] Wood J. Duality for modules over finite rings and applications to coding theory. Amer J Math, 1999, 121: 555--575 |