数学物理学报 ›› 1999, Vol. 19 ›› Issue (4): 397-404.

• 论文 • 上一篇    下一篇

平均熵

  

  1. (中国科学院武汉物理与数学研究所 |武汉 430071)

     

  • 出版日期:1999-11-01 发布日期:1999-11-01

Mean entropy

  1.  (Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071)

  • Online:1999-11-01 Published:1999-11-01

摘要:

T为紧度量空间X上的连续自映射,mX上的Borel概率测度,通过把测度(拓扑)熵局部化,引入了T关于m的平均测度(拓扑)熵的概念,它们分别为相应m 测度(拓扑)混沌吸引子熵的加权平均,从而T关于m的平均测度(拓扑)熵大于零当且仅当Tm 测度(拓扑)混沌吸引子.证明了线段I上关于Lebesgue测度平均拓扑熵大于c与等于零的连续自映射都在C0(I,I)中稠密.

关键词: 平均拓扑熵, 平均测度熵, m-吸引子, m-拓扑混沌吸引子, m-测度混沌吸引子.

Abstract:

Let X be a compact metric space, T:XX be a continuous transformation, and m be a Borel measure on X. The mean topological entropy H* (T,m) and mean measure theoretical entropy H*(T,m) of T respect to m are defined via the localization of topological entropy and measure theoretical entropy of T. H*(T,m) (resp. H*(T,m)) is the weight of topological (resp. Measure theoretical) entropies of corresponding m topological (resp. Measure theoretical) chaotic attractors. So H*(T,m) (resp. H*(T,m)) is positive if and only if T has an  m topological (resp. measuretheoretical) chaotic attractor. For interval map f:II, the mean topological entropy repect to Lebesgue measure of f is denoted by H(f). It is proved that both {f:II: H(f)>c} and {f:II: H(f)=0} are dense in C0(I,I).

Key words:  Meantopologicalentropy, Mean measuretheoreticentropy, m-attractor, m-
topologicalchaoticattractor,
m-measuretheoreticchaoticattractor.

中图分类号: 

  • 28D,58F