Stochasticdelayneuralnetwork,Lyapunovfunction,Martigaleinequality,
Exponentialstability
,"/> Hopfield 型时滞神经网络的指数稳定性

数学物理学报 ›› 1999, Vol. 19 ›› Issue (2): 211-218.

• 论文 • 上一篇    下一篇

Hopfield 型时滞神经网络的指数稳定性

  

  1. (华中理工大学控制科学与工程系 武汉 430074)
  • 出版日期:1999-05-01 发布日期:1999-05-01

Exponential stability of hopfield type stochastic delay neural netuworks

  1. (Huazhong University of Science and Technology, Wuhan 430074)
  • Online:1999-05-01 Published:1999-05-01

摘要:

研究了Hopfield型随机时滞神经网络dx(t)=[-Ax(t)+Bσ(x(t-τ))dt+f(t,x(t),x(t-τ))dw(t)的均方指数稳定性与几乎必然指数稳定性.应用Lyapunov函数与鞅不等式,建立了这种随机时滞神经网络指数稳定的时滞相关的充分条件.文献中某些关于确定性的时滞神经网络x(t)=-Ax(t)+Bσ(x(t-τ))与神经网络x(t)=-Ax(t)+Bσ(x(t))的稳定准则是文中的特殊情况.

关键词: 随机时滞神经网络, Lyapunov函数, 鞅不等式, 指数稳定

Abstract:

In this paper the exponential stability in mean square and almost surely exponential stability are investigated for stochastic neural networks with delay of the form

dx(t)=[-Ax(t)+Bσ(x(t-τ))]dt + f(t,x(t),x(t-τ))dw(t).

For such neural networks, several sufficient conditions for the exponential stability are established by the Lyapunov function method together with martigale inequalities, The obtained results are dependent of the size of delay. Some stability criteria in the literature for the deterministic neural networks with delay x(t) = -Ax(t)+ Bσ(x(t-τ)) and neural networks x(t) = -Ax(t) + Bσ(x(t)) are included as special cases.

Key words: Stochasticdelayneuralnetwork')">Stochasticdelayneuralnetwork, Lyapunovfunction, Martigaleinequality,
Exponentialstability

中图分类号: 

  • 93D