[1] Berkovich Y. Groups of Prime Power Order. Berlin, New York: Walter de Gruyter, 2008
[2] 海进科, 李正兴. 有限 ATI -群的类保持Coleman自同构. 数学学报(中文版), 2010, 53(5): 891--896
[3] 海进科, 王玉雷. 具有一个 T.I. Sylow 2 -子群的有限群的类保持Coleman自同构. 数学学报(中文版), 2008, 51(6): 1115--1118
[4] Hertweck M. A counterexample to the isomorphism problem for integral group rings. Ann Math, 2001, 154(1): 115--138
[5] Hertweck M. Local analysis of the normalizer problem. J Pure Appl Algebra, 2001, 163(3): 259--276
[6] Hertweck M. Class-preserving Coleman automorphisms of finite groups. Monatsh Math, 2002, 136(1): 1--7
[7] Jackowski S, Marciniak Z S. Group automorphisms inducing the identity map on cohomology. J Pure Appl Algebra, 1987, 44(1-3): 241--250
[8] Kurzweil H, Stellmacher B. The Theory of Finite Groups-an Introduction. New York, Berlin, Heidelberg: Spinger-Verlag, 2004
[9] Li Y. The normalizer property of a metabelian group in its integral group ring. J Algebra, 2002, 256(2): 343--351
[10] Li Z, Hai J. The normalizer property for integral group rings of wreath products of finite nilpotent groups by cyclic groups. Comm Algebra, 2011, 39: 521--533
[11] Li Z, Hai J. The normalizer property for integral group rings of wreath products of finite nilpotent groups by some 2-groups. J Group Theory, 2011, 14: 299--306
[12] Marciniak Z S, Roggenkamp K W. The Normalizer of a Finite Group in its Integral Group Ring and Cech Cohomology. Dordrecht: Kluwer Academic, 2001
[13] Petit Lobão T, Polcino Milies C. The normalizer property for integral group rings of Frobenius groups. J Algebra, 2002, 256(1): 1--6
[14] Petit Lobão T, Sehgal S K. The normalizer property for integral group rings of complete momonial groups. Comm Algebra, 2003, 31(6): 2971--2983
[15] Sehgal S K. Units in Integral Group Rings. Harlow: Longman Scientific and Technical Press, 1993 |