1 Peskin M E, Schroeder D V. An Introduction to quantum field theory. Addison Wesley publishing Company, 1995
2 Lee T D, Yang C N. Theory of charged vector mesons interacting with electromagnetic field. Phys Rev, 1962,128:885
3 Mizrahi M M. Phase space path integral, without limiting procedure. J Math Phys, 1978,19:298
4 Li Z P. Canonical symmetry of a constrained Hamiltonian system and canonical ward identity. Int J Theor Phys, 1995,34: 523
5 李子平. 量子系统的整体对称性. 中国科学,A辑,1996,26:649
6 Fradkin E S, Palchik M Ya. Conform invariance in quantum Yang-Mills theory. Phys Lett, 1984,B147:86
7 邝宇平,易余萍. 规范场-鬼场固有顶角的Ward-Takahashi恒等式. 高能物理与核物理,1980,4:286
8 李子平. 经典和量子约束系统及其对称性质. 北京:工业大学出版社,1993
9 Li Z P. Generalized Noether identities and application to Yang-Mills field theory. Int J Theor Phys, 1987,26: 853
10 Lerda A. Anyons: Springer-Verlag, Berlin, 1992
11 Antillon A ,Escallona J, Genamm G, et al. Self-dual non-abelian vortices in a Ф2 Chern-Simons theory. Phys Lett, 1995,B359:327
12 Banerjee R, Chakraborty B. Hamiltonian formulation of the theory with a non-abelian Chern-Simons theorem coupled to fermions. Ann Phy (NY), 1966,247:188
13 Foussats A, Manavella E, Repetto C, et al.. Non-abelian higher-derivative Chern-Simons theories. Int J Theor Phys, 1995,34: 1037
14 Deser S, Jackiw R, Templeton S. Topologically massive gauge theories. Ann Phys,(N.Y.), 1982,140:372
15 Sundermeyer K. Lecture Notes in Physics. Berlin: Springer-Verlag,1982
|