[1] Dunbar S R. Traveling wave in diffusive predatorprey equations: periodic orbits and point-to-periodic
heteroclinic orbits. SIAM J Appl Math, 1986, 46: 1057--1078
[2] Epstein I R, Pojman J A. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and
Chaos. Oxford: Oxford University Press, 1998
[3] Gourley S A. Traveling fronts in the diffusive Nicholson's blowflies equation with distributed delays. Math Comput Modelling, 2000, 32(7/8): 843--853
[4] Gourley S A. Traveling front solutions of a nonlocal Fisher equation. J Math Biol, 2000, 41(3): 272--284
[5] Gourley S A, Chaplain M A J. Traveling fronts in a food-limited population model with time delay. Proc Roy Soc Edinburgh Sect A, 2002, 132(1): 75--89
[6] Huang W. Traveling waves connecting equilibrium and and periodic orbit for reaction-diffusion equations with time delay and nonlocal response. J Differential Equations, 2008, 244: 1230--1254
[7] Faria T, Huang W, Wu J. Traveling waves for delayed reaction-diffusion equations with global response. Proc Royal Soc London A, 2006, 462: 229--261
[8] Murray J D. Mathematical Biology. Berlin, Heidelberg: Springer-Verlag, 1989
[9] Ma M J, Ou C, Zhao X Q. Persistence of periodic patterns for perturbed biological oscillators. J Differential Equations, 2009, 247: 2597--2619
[10] Ou C, Wu J. Traveling wavefronts in a delayed food-limited population model. SIAM J Math Anal, 2007, 39: 103--125
[11] Painter K J, Hillen T. Volume-filling and quorum-fensing in models for chemosensitive and movement. Canadian Applied Mathematics Quartely, 2002, 10: 501--542
[12] Palmer K J. Exponential dichotomies and transversal homoclinic points. J Differential Equations, 1984, 55(2): 225--256
[13] Sherratt J A. Wavefront propagation in a competition equation with a new motility term modeling contact inhibition between cell populations. Proc R Soc Lond A, 2000, 456: 2365--2386
[14] Ou C, Yuan W. Traveling wavefronts in a volume-filling chemotaxis model. SIAM Applied Dynamical Systems, 2009, 8: 390--416
[15] Yuan W. Traveling wavefronts in a tumor growth model with contact inhibition and a volume-filling chemotaxis model [D]. Canada: Memorial University of Newfoundland, 2008
[16] Mischaikow K, Smith H, Thieme H R. Asymptotically autonomous semiflows: chain re currence and lyapunov functions. Trans Amer Math Soc, 1995, 347(5): 166--168 |