[1] Antczak T. A new approach to multiobjective programming with a modified objective function. J Global Optim, 2003, 27: 485--495
[2] Arana-Jim\'{e}nez M, etc. Pseudoinvexity, optimization conditions and efficiency in multiobjective problems;
duality. Nonlinear Anal, 2003, 68: 24--34
[3] Chen J W, etc. Multiobjective optimization problems with modified objective functions and cone constraints and applications. J Global Optim, 2011, 49: 137--147
[4] Clarke F H. Optimization and Nonsmooth Analysis. New York: Wiley-Interscience, 1983
[5] Craven B D. Control and Optimization. London: Chapman and Hall, Ltd, 1995
[6] Craven B D, Yang X Q. A nonsmooth version of alterative theorem and nonsmooth multiobjective programming. Utilitas Math, 1991, 40: 117--128
[7] Hanson M A. On sufficiency of the Kuhn-Tucker conditions. J Math Anal Appl, 1981, 80: 545--550
[8] Kim D S. Nonsmooth multiobjective fractional programming with generalized invexity. Taiwanese J Math, 2006, 2: 467--478
[9] Lee G M, Lee B S, Chang S S. On vector quasivariational inequalities. J Math Anal Appl, 1996, 203: 626--638
[10] Li L, Li J. Equivalence and existence of weak Pareto optima for multiobjective optimization problems with cone constraints. Appl Math Lett, 2008, 21: 599--606
[11] Luc D T. Theory of Vector Optimization. Berlin: Springer-Verlag, 1989
[12] Mishra S K, Wang S Y, Lai K K. Symmetric duality for minimax mixed integer programming problems with pseudo-invexity. European J Oper Res, 2009, 198: 37--42
[13] Suneja S K, Khurana S, Vani. Generalized nonsmooth invexity over cones in vector optimization. European J Oper Res, 2008, 186: 28--40
[14] Yang X M, Yang X Q, Teo K L. Duality and saddle point type optimality for generalized nonlinear fractional programming. J Math Anal Appl, 2004, 289: 100--109 |