[1] Cox J C, Huang C. Optimal consumptions and portfolio policies when asset prices follow a diffusion process. Journal of Economic Theory, 1989, 49: 33--83
[2] Markowitz H. Portfolio selection. Journal of Finance, 1952, 7: 77--91
[3] Markowitz H. Portfolio Selection. New York: John Wiley And Sons, 1959
[4] Nawrocki D N. A brief history of downside-risk measures. The Journal of Investing, 1999, 8: 9--25
[5] Fishburn P. Mean-risk analysis with risk associated with below-target returns. Amer Econ Rev, 1977, 67: 116--125
[6] Hu Y Z, Øksendal B, Sulem A. Optimal Portfolio in Fractional Black-Scholes Market//Albeverio S, et al (Ed.). Mathematical Physics and Stochastic Analysis. Singspore: World Scientific, 2000a: 267--279
[7] Biagini F, Hu Y Z, {\O}ksendal B, Sulem A. A stochastic maximum principle for processes driven by fractional Brownian motion. Stochastic Process and Application, 2002, 100: 233--253
[8] Hu Y Z, Øksendal B, Sulem A. Optimal consumption and portfolio in a Black-Scholes market driven by fractional Brownian motion. Infin Dimens Anal Quantum Probab Relat Top, 2003, 6: 519--536
[9] Hu Y Z, {\O}ksendal B, Sulem A. Fractional white noise calculus and applications to finance. Infin Dimens Anal Quantum Probab Relat Top, 2003, 6: 1--32
[10] Manderlbort B, van Ness J. Fractional brownian motions, fractional noise and applications. SIAM Review, 1968, 10: 422--437
[11] Duncan T E, Hu Y Z, Pasik-Duncan B. Stochastic calculus for fractional Brownian motion. SIAM Journal on Control and Optimization, 2000, 38: 582--612
[12] Norros I, Valkeila E, Virtamo J. An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions. Bernoulli, 1999, 5(4): 571--587 |