[1] Aimar H, Bernardis A, Iaffei B. Comparison of Hardy Littlewood and dyadic maximal functions on spaces of homogeneous type. J Math Anal and Appl, 2005, 312: 105--120
[2] Bishop C J. An $A_1$ Weight not Comparable with any Quasiconformal Jacobian. Contemp Math 432. Providence RI: Amer Math Soc, 2007: 7--18
[3] Bonk M, Heinonen J, Saksman E. The Quasiconformal Jacobian Problem. Contemp Math 355. Providence RI: Amer Math Soc, 2004: 77--96
[4] Coifman R R, Rochberg R. Another characterization of BMO. Proc Amer Math Soc, 1980, 79(2): 249--254
[5] Christ M. A T(b) theorem with remarks on analytic capacity and the Cauchy integral. Colloq Math, 1990, 60/61: 601--628
[6] Heinonen J, Semmes S. Thirty-three yes or no questions about mappings, measures and metrics. Conform Geom Dyn, 1997, 1: 1--12
[7] Heinonen J. Lectures on Analysis on Metric Spaces. New York, Heidelberg: Springer-Verleg, 2001
[8] Jonsson A. Measures satisfying a refined doubling condition and absolute continuity. Proceedings of the AMS, 1995, 123: 2441--2446
[9] Kaufman R, Wu J M. Two problems on doubling measures. Rev Math Iberoamericana, 1995, 11: 527--545
[10] Luukkainen J, Saksman E. Every complete doubling metric space carries a doubling measure. Proc Amer Math Soc, 1998, 126: 531--534
[11] Saksman E. Remarks on the nonexistence of doubling measures. nn Acad Sci Fenn Math, 1999, 24: 155--163
[12] Semmes S. Bi-Lipschitz mappings and strong A1 weights. Ann Acad Sci Fenn Math, 1993, 18: 211--248
[13] Semmes S. On the nonexistence of bilipchitz parameterizations and geometric problems about A∞ weights. Rev Mat Iberoamericana, 1996, 12: 337--410
[14] Vol'berg A L, Konyagin S V. On measures with the doubling condition. Math USSR-Izv, 1987, 30: 629--638
[15] Lin Haibo, Meng Yan, Yang Dachun. Weighted estimates for commutators of multilinear Calder\'{o}n-Zygmund operators with non-doubling measures. Acta Math Scientia, 2010, 30B(1): 1--18 |