数学物理学报 ›› 2011, Vol. 31 ›› Issue (6): 1543-1549.

• 论文 • 上一篇    下一篇

等离子体双极Euler-Maxwell方程组的松弛极限

王术|杨建伟|王卫   

  1. 1.北京工业大学 应用数理学院 |北京 100124|2.华北水利水电学院 数学与信息科学学院 |郑州 450011|3.中国石化石油工程技术研究院 |北京 100101
  • 收稿日期:2009-09-22 修回日期:2011-08-10 出版日期:2011-12-25 发布日期:2011-12-25
  • 基金资助:

    国家自然科学基金(11071009)资助

The Relaxation Limit of Bipolar Euler-Maxwell Equations Arising from Plasma

 WANG Shu, YANG Jian-Wei, WANG Wei   

  1. 1.College of Applied Sciences, Beijing University of Technology, Beijing 100124|2.College of |Mathematics and Information Science, North China University of |Water Resources and Electric Power, Zhengzhou 450011; 3.Sinopec Research Institute of Petroleum Engineering, Beijing 100101
  • Received:2009-09-22 Revised:2011-08-10 Online:2011-12-25 Published:2011-12-25
  • Supported by:

    国家自然科学基金(11071009)资助

摘要:

研究等离子体双极Euler-Maxwell方程组的零松弛时间极限. 对于好的初值, 借助Maxwell迭代和能量方法, 证明了当松弛时间趋向于零时,
双极Euler-Maxwell方程组周期初值问题的解到漂流扩散方程组周期初值问题解的收敛性.

关键词: Euler-Maxwell方程组, 松弛极限, 漂流扩散方程组

Abstract:

This work is concerned with multi-dimensional bipolar Euler-Maxwell equations for plasmas with short momentum relaxation time. With the help of the Maxwell iteration, the convergence for the smooth solutions to the bipolar Euler-Maxwell equations towards the solutions to the smooth solutions to the bipolar drift-diffusion equations is proved, as the relaxation time tends to zero. Meanwhile, the formal derivation of the latter from the former is justified.

Key words: Euler-Maxwell equations, Relaxation limit, Drift-diffusion equations

中图分类号: 

  • 35B40