数学物理学报 ›› 2011, Vol. 31 ›› Issue (6): 1526-1536.

• 论文 • 上一篇    下一篇

求一般线性矩阵方程组中心对称解的迭代算法

田小红|张凯院   

  1. 西北工业大学应用数学系 西安 710072
  • 收稿日期:2009-07-13 修回日期:2011-04-28 出版日期:2011-12-25 发布日期:2011-12-25
  • 基金资助:

    陕西省自然科学基金(2006A05)资助

Iterative Method for Centro-symmetric Solution of the Linear Matrix Equations

 TIAN Xiao-Hong, ZHANG Kai-Yuan   

  1. Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072
  • Received:2009-07-13 Revised:2011-04-28 Online:2011-12-25 Published:2011-12-25
  • Supported by:

    陕西省自然科学基金(2006A05)资助

摘要:

该文建立了求一般线性矩阵方程组的中心对称解的迭代算法. 使用该算法不仅可以判断矩阵方程组是否存在中心对称解, 而且在有中心对称解时, 还能够在有限步迭代计算之后得到矩阵方程组的极小范数中心对称解. 同时, 也能够在矩阵方程组的中心对称解集合中求得给定矩阵的最佳逼近.

关键词: 线性矩阵方程组, 中心对称解, 极小范数中心对称解, 迭代算法, 最佳逼近

Abstract:

An iterative method is presented to find the centro-symmetric solutions of the general linear matrix equations. By this iterative method, the solvability of the matrix equations over centro-symmetric solution can be determined, and  its least-norm centro-symmetric solution can be got by choosing a special initial centro-symmetric matrix. In addition, its optimal approximation matrix to a given matrix can be obtained.

Key words: Linear matrix equations, The centro-symmetric solution, Least-norm centro-symmetric solution, Iterative method, Optimal approximation

中图分类号: 

  • 65F10