[1] Alt H W, Caffarelli L A. Existence and regularity for a minimum problem with free boundary. J Reine Angew Math, 1981, 325: 105--144
[2] Alt H W, Caffarelli L A, Friedman A. A free boundary problem for quasi-linear elliptic equations. Ann Scuola Norm Sup Pisa cl Sci, 1984, 11: 1--44
[3] Kikuchi K, Omata S. A free boundary problem for one dimensional hyperbolic equation. Adv Math Sci Appl, 1999, 9(2): 775--786
[4] Imai H, Kikuchi K, Nakane K, et al. A numerical approach to the asymptotic behavior of solutions of a one-dimensional free boundary problem of hyperbolic type. Japan J Indust Appl Math, 2001, 18(1): 43--58
[5] Nakane K, Shinohara T. Global solutions to a one-dimensional hyperbolic free boundary problem which arises in peeling
phenomenon. J Comput Appl Math, 2003, 152: 367--375
[6] Nakane K, Shinohara T. Existence of periodic solutions for a free boundary problem of hyperbolic type. Journal of Hyperbolic Differential Equations, 2008, 5(4): 785--806
[7] Omata S. A free boundary problem for a quasi-linear elliptic equation part I: Rectifiability of free boundary. Differential and Integral Equations, 1993, 6(6): 1299--1312
[8] Omata S, Yamaura Y. A free boundary problem for quasi-linear elliptic equations part II: C1, α-regularity of free boundary. Funkcialaj Ekvacioj, 1999, 42(1): 9--70
[9] Yamazaki Y, Toda A. Spatio-temporal patterns in an adhesive tape at peeling (critical phenomena and bifurcation problems). Res Inst Math Sci Kokyuroku, 2001, 1231: 56--63
[10] Li Tatsien, Yu Wenci. Boundary Value Problems for Quasilinear Hyperbolic Systems. Duke University Mathematics Series V. USA: Mathematics Department Duke University, 1985 |