数学物理学报 ›› 2011, Vol. 31 ›› Issue (5): 1447-1458.

• 论文 • 上一篇    

多线性分数次积分与Lipschitz函数生成的交换子的有界性

默会霞1, 张志英2   

  1. 1.北京邮电大学理学院 北京 100876;2.浙江理工大学理学院 杭州 310018
  • 收稿日期:2009-12-17 修回日期:2010-12-30 出版日期:2011-10-25 发布日期:2011-10-25
  • 基金资助:

    国家自然科学基金(10871024)和中央高校基本科研业务费专项资金(BUPT 2009RC0703)资助

Commutators Generated by Multilinear Fractional Integrals and Lipschitz Functions

 MO Hui-Xia1, ZHANG Zhi-Ying2   

  1. 1.School of Science, Beijing University of Post and Telecommunications, Beijing 100876;
    2.School of Science, Zhejiang Sci-Tech University, Hangzhou 310018
  • Received:2009-12-17 Revised:2010-12-30 Online:2011-10-25 Published:2011-10-25
  • Supported by:

    国家自然科学基金(10871024)和中央高校基本科研业务费专项资金(BUPT 2009RC0703)资助

摘要:

设$m\in{\Bbb N}$, $\vec{b}=(b_{1},\cdots ,b_{m})$ 是一个局部可积函数族, 且$\vec{f}=(f_{1},\cdots ,f_{m}),$ 其中 $f_{1},\cdots ,f_{m}\in
 L_{c}^{\infty}({\mathbf{R}}^{n}).$ 设 $x\notin\bigcap\limits_{i=1}^{m}\mbox{supp}f_{i},$ 则由多线性分数次积分与函数族$\vec{b}=(b_{1},\cdots ,b_{m})$生成的交换子定义为
$$I_{\alpha,m}^{\vec{b}}(\vec{f})(x) =\dint_{({\mathbf{R}}^{n})^{m}}K(x,y_{1},\cdots ,y_{m})\prod\limits_{i=1}^{m}(b_{i}(x)-b_{i}(y_{i}))f_{i}(y_i){\rm d}y_1\cdots {\rm d}y_m.$$

当$b_{j}\in\dot{\Lambda}_{\beta_{j}}({\mathbf{R}}^{n})~(1\leq j\leq m)$时, 作者考虑$I_{\alpha,m}^{\vec{b}}$在乘积 Lebeasgue 空间,Triebel-Lizorkin 空间和Lipschitz  函数空间的有界性

关键词: 多线性分数次积分, 交换子, Triebel-Lizorkin 空间, Lipschitz 函数空间

Abstract:

Let $m\in{\Bbb N}$, $\vec{b}=(b_{1},\cdots ,b_{m})$ whose components are of locally integrable functions, and $\vec{f}=(f_{1},\cdots ,f_{m})$ where $f_{1},\cdots ,f_{m}\in L_{c}^{\infty}({\mathbf{R}}^{n}).$ Let $x\notin\bigcap\limits_{i=1}^{m}\mbox{supp}f_{i},$ then the commutator generated by the multilinear fractional integral is given by
$$I_{\alpha,m}^{\vec{b}}(\vec{f})(x) =\dint_{({\mathbf{R}}^{n})^{m}}K(x,y_{1},\cdots ,y_{m})\prod\limits_{i=1}^{m}(b_{i}(x)-b_{i}(y_{i}))f_{i}(y_i){\rm d}y_1\cdots {\rm d}y_m.$$

When $b_{j}\in\dot{\Lambda}_{\beta_{j}}({{\mathbf{R}}}^{n})~(1\leq j\leq m)$, the authors  establish the boundedness of $I_{\alpha,m}^{\vec{b}}$ on product Lebeasgue spaces, Triebel-Lizorkin spaces and Lipschitz spaces.

Key words: Multilinear fractional integral, Commutator, Triebel-Lizorkin space,  Lipschitz function space

中图分类号: 

  • 42B25