[1] Dai G W, Hao R F. Existence of solutions for a p(x)-Kirchhoff-type equation. J Math Anal Appl, 2009, 359: 275--284
[2] Chang K C. Variational methods for nondifferentiable functionals and their applications to partialdifferential equations. J Math Anal Appl, 1981, 80: 102--129
[3] Clarke F H. Optimization and Nonsmooth Analysis. New York: Wiley, 1983
[4] Kourogenis N C, Papageorgiou N S. Existence theorems for elliptic hemivariational inequalities involving the p-laplacian. Abstr Appl Anal, 2002, 7(5): 259--277
[5] Kristly A. Infinitely many solutions for a differential inclusion problem in RN. J Differential Equations, 2006, 220: 511--530
[6] Qian C Y, Shen Z F. Existence and multiplicity of solutions for p(x)-Laplacian equation with nonsmooth potential. Nonlinear Anal Real,
2010, 11: 106--116
[7] Ge B, Xue X P. Multiple solutions for inequalities Dirichlet problems by the p(x)-Laplacian. Nonlinear Anal Real, 2010, 11: 3198--3210
[8] Fan X L. On the sub-supersolution method for p(x)-Laplacian equations. J Math Anal Appl, 2007, 330: 665--682
[9] Fan X L, Zhang Q H. Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal Theor, 2003, 52: 1843--1852
[10] Zang A P. p(x)-Laplacian equations satisfying Cerami condition. J Math Anal Appl, 2008, 337: 547--555
[11] Dinca G. A fixed point method for the p(•)-Laplacian. C R Acad Sci Paris, 2009, 347: 757--762
[12] Fan X L, Zhao D. On the space Lp(x)(Ω) and Wk, p(x)(Ω). J Math Anal Appl, 2001, 263: 424-446
[13] Iannizzotto A, Papageorgiou N S. Existence of three nontrivial solutions for nonlinear Neumann hemivariational inequalities. Nonlinear Anal, 2009, 70: 3285--3297
[14] Gasinski L, Papageorgiou N S. Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Boca Raton: Chapman Hall and CRC Press, 2005 |