[1] Alzer H. A power mean inequality for the gamma function. Monatsh Math, 2000, 131(3): 179--188
[2] Alzer H. Ungleichungen f\"ur Mittelwerte. Arch Math, 1986, 47(5): 422--426
[3] Alzer H. Ungleichungen f\"ur (e/a)a(b/e)b. Elem Math, 1985, 40: 120--123
[4] Alzer H, Janous W. Solution of problem 8*. Crux Math, 1987, 13: 173--178
[5] Alzer H, Qiu S L. Inequalities for means in two variables. Arch Math, 2003, 80(2): 201--215
[6] Bullen P S, Mitrinovi\'c D S, Vasi\'c P M. Means and Their Inequalities. Dordrecht: D Reidel Publishing Co, 1988
[7] Burk F. The geometric, logarithmic, and arithmetic mean inequalities. Amer Math Monthly, 1987, 94(6): 527--528
[8] Carlson B C. The logarithmic mean. Amer Math Monthly, 1972, 79: 615--618
[9] Chu Y M, Xia W F. Two sharp inequalities for power mean, geometric mean, and harmonic mean. J Inequal Appl, 2009: 741923
[10] Guo B N, Qi F. A simple proof of logarithmic convexity of extended mean values. Numer Algorithms, 2009, 52: 89--92
[11] Häst\"{o} P A. Optimal inequalities between Seiffert's mean and power means. Math Inequal Appl, 2004, 7(1): 47--53
[12] Imoru C O. The power mean and the logarithmic mean. Internat J Math Math Sci, 1982, 5(2): 337--343
[13] Janous W. A note on generalized Heronian means. Math Inequal Appl, 2001, 4(3): 369--375
[14] Leach E B, Sholander M C. Extended mean values II. J Math Anal Appl, 1983, 92(1): 207--233
[15] Lin T P. The power mean and the logarithmic mean. Amer Math Monthly 1974, 81: 879--883
[16] Long B Y, Chu Y M. Optimal power mean bounds for the weighted geometric mean of classical means. J Inequal Appl, 2010: 905697
[17] Pittenger A O. Inequalities between arithmetic and logarithmic means. Univ Beogard Publ Elecktrotehn Fak Ser Mat Fiz, 1981, 678--715: 15--18
[18] Pittenger A O. The symmetric, logarithmic and power means. Univ Beogard Publ Elecktrotehn Fak Ser Mat Fiz, 1981, 678-715: 19--23
[19] Qi F, Chen S X. Complete monotonicity of the logarithmic mean. Math Inequal Appl, 2007, 10(4): 799--804
[20] Qi F, Guo B N. An inequality between ratio of the extended logarithmic means and ratio of the exponential means. Taiwanese J Math, 2003, 2(7): 229--237
[21] Sándor J. A note on some inequalities for means. Arch Math, 1991, 56(5): 471--473
[22] Shi M Y, Chu Y M, Jiang Y P. Optimal inequalities among various means of two arguments. Abstr Appl Anal, 2009: 694394
[23] Stolarsky K B. The power and generalized logarithmic mean. Amer Math Monthly, 1980, 87(7): 545--548
[24] Trif T. On certain inequalities involving the identric mean in n variables. Studia Univ Babes-Bolyai Math, 2001, 46(4): 105--114
[25] Wang M K, Chu Y M, Qiu Y F. Some comparison inequalities for generalized Muirhead and identric means. J Inequal Appl, 2010: 295620
[26] Wu S H. Generalization and sharpness of the power means inequality and their applications. J Math Anal Appl, 2005, 312(2): 637--652
[27] Xia W F, Chu Y M, Wang G D. The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means. Abstr Appl Anal, 2010: 604804
[28] Zhang X M, Chu Y M. A new method to study analytic inequalities. J Inequal Appl, 2010: 698012
[29] Zhang X M, Xi B Y, Chu Y M. A new method to prove and find analytic inequalities. Abstr Appl Anal, 2010: 128934
|