[1] Machida M, Koyama T. Time-dependent Ginzburg-Landau theory for atomic Fermi gases near the BCS-BEC crossover. Phy Rev A, 2006, 74: 033603
[2] Aranson I S, Kramer L. The world of the complex Ginzburg-Landau equation. Rev Mod Phys, 2002, 74: 99--143
[3] Holland M, Kokkelmans S J J M F, Chiofalo M L, Walser R. Resonance superfluidity in a quantum degenerate Fermi gas. Phys Rev Lett, 2001, 387(12): 120406
[4] Ohashi Y, Griffin A. BCS-BEC crossover in a gas of Fermi atoms with a Feshbach resonance. Phys Rev Lett, 2002, 89(13): 130402
[5] Timmermans E, Furuya K, Milonni P W, Kerman A K. Prospect of creating a composite Fermi-Bose superfluid. Phys Lett A, 2001, 285(3/4): 228--233
[6] de Gennes P G. Superconductivity of Metals and Alloys. Reading, MA: Addisom-Wesley, 1998; Abrikosov A A. Fundamentals of the Theory of Metals. New York: Elsevier-Science Ltd, 1988
[7] Drechsler M, Zwerger W. Crossover from BCS-superconductivity to Bose-condensation. Ann Phys, 1992, 504(1): 15--23
[8] de Melo C A R Sa, Randeria M, Engelbrecht J R. Crossover from BCS to Bose superconductivity: transition temperate and time-dependent Ginzburg-Landau theory. Phys Rev Lett, 1993, 71: 3202--3205
[9] Baranov M A, Petrov D S. Low-energy collective excitations in a superfluid trapped Fermi gas. Phy Rev A, 2000, 62: 041601
[10] De Palo S, Castellani C, Dicastro C, Chakraverty B K. Effective action for superconductors and BCS-Bose crossover. Phys Rev B, 1999, 60: 564--573
[11] Tempere J, Wouters M, Devreese J T. Path-integral mean-field decription of the vortex state in the BEC-to-BCS crossover. Phys Rev A, 2005, 71: 033631
[12] Wouters M, Tempere J, Devreese J T. Path integral formulation of the tunneling dynamics of a superfluid Fermi gas in an optical potential. Phys Rev A, 2004, 70(1): 013616 |