数学物理学报 ›› 2011, Vol. 31 ›› Issue (5): 1141-1149.

• 论文 •    下一篇

均值-方差准则下的投资连结寿险合同对冲问题

毕俊娜|郭军义   

  1. 南开大学 数学科学学院 天津 300071
  • 收稿日期:2009-07-12 修回日期:2010-08-02 出版日期:2011-10-25 发布日期:2011-10-25
  • 基金资助:

    国家自然科学基金(10871102)和高等学校博士学科点专项科研基金(20090031110001)资助

Hedging Unit-linked Life Insurance Contracts under Mean-variance Criterion

 BI Jun-Na, GUO Jun-Yi   

  1. School of Mathematical Sciences, Nankai University, Tianjin 300071
  • Received:2009-07-12 Revised:2010-08-02 Online:2011-10-25 Published:2011-10-25
  • Supported by:

    国家自然科学基金(10871102)和高等学校博士学科点专项科研基金(20090031110001)资助

摘要:

该文考虑了在均值-方差最优准则下,投资连结寿险合同的风险对冲问题. 重点考虑了一类重要的投资连结寿险,即定期寿险合同.假设保费在最初一次性收取且保险人可以将自己的资产投资到一个无风险资产(债券)以及一个风险资产(股票)中,风险资产的价格由几何布朗运动来描述.利用随机最优控制理论, 可以得到有效策略(最优对冲策略)和有效前沿.

关键词: 均值-方差准则, 对冲策略, 投资连结寿险, 有效策略

Abstract:

In this paper, the authors try to hedge the life insurance claims under the mean-variance criterion. The hedging portfolio is constructed for
unit-linked life insurance contracts with a term insurance payment. Premiums are supposed to be payed as single premium at the
beginning. It is  assumed that the insurer can invest in a risk-free asset (bond) and a risky asset (stock). The price of the risky asset is described by a geometric Brownian motion. Using stochastic control theory, the efficient strategy (hedging strategy) and the efficient
frontier are obtained.

Key words: Mean-variance criterion, Hedging strategy, Unit-linked life insurance, Efficient frontier

中图分类号: 

  • 91B30