[1] Tolsa X. BMO, H1 and Calder\'on-Zygmund operator for non-doubling measures. Math Ann, 2001, 319: 89--149
[2] Tolsa X. Littlewood-Paley theory and T(1) theorem with non-doubling. Advance in Math, 2001, 164: 57--116
[3] Hu G, Meng Y, Yang D C. Multilinear commutators of singular integrals with non-doubling measures. Integral Equation and Operator, 2005, 51: 235--255
[4] Hu G, Lin H, Yang D C. Marcinkiewicz integrals with non-doubling measures. Integral Equation and Operator, 2007, 58: 205--238
[5] Stein E M. On the functions of Littlewood-Paley, Lusin and Marcinkiewicz integral. Trans Amer Math Soc, 1958, 88: 430--466
[6] Torchinsky A, Wang S. A note on Marcinkiewicz integral. Colloq Math, 1990, 60/61: 235--243
[7] Mo H, Lu S. The boundedness of commutators for the Marcinkiewicz integrals. Acta Math Sinica (in Chinese), 2006, 49: 481--490
[8] 陈冬香,陈杰诚. 具有粗糙核的Macinkiewicz积分交换子在齐次Herz空间中的有界. 数学物理学报, 2006, 26: 832--839
[9] Garcà-Cuerva J, Eduardo Gatto A. Boundedness properties of fractional integral operators associated to nondoubling measures. arXiv:math/0212323v1[math.FA] 23 Dec 2002
[10] Sawano Y, Tanaka H. Morrey spaces for nondoubling measures. Acta Mathematica Sinica (English Series), 2005, 21: 1535--1544 |