数学物理学报 ›› 2011, Vol. 31 ›› Issue (4): 1008-1021.

• 论文 • 上一篇    下一篇

Kirchhoff型方程解的渐近行为

杨志坚1|程建玲2   

  1. 1.郑州大学数学系 郑州 450001|2.郑州华信学院基础部 河南新郑 451100
  • 收稿日期:2009-07-06 修回日期:2011-03-15 出版日期:2011-08-25 发布日期:2011-08-25
  • 基金资助:

    国家自然科学基金(10971199)和河南省自然科学基金(092300410067)资助

Asymptotic Behavior of Solutions to the Kirchhoff Type Equation

 YANG Zhi-Jian1, CHENG Jian-Ling2   

  1. 1.Department of Mathematics, Zhengzhou University, Zhengzhou |450001|2.Department of Basis, Zhengzhou Huaxin College, Henan Xinzheng 451100
  • Received:2009-07-06 Revised:2011-03-15 Online:2011-08-25 Published:2011-08-25
  • Supported by:

    国家自然科学基金(10971199)和河南省自然科学基金(092300410067)资助

摘要:

该文研究具强阻尼项的Kirchhoff型方程utt-M(||\nabla u||2uut+g(x, u)+h(ut)=f(x)的初边值问题的解的长时间行为,其中M(s)=1+sm/2, m≥1. 该文用两种方法证明上述问题对应的算子半群S(t)在相空间X=(H2(Ω)∩H01(Ω)×H01(Ω)中整体吸引子的存在性, 最后对抽象条件加以验证并给出具体实例.

关键词: 初边值问题, 无穷维动力系统, 整体解,  解的长时间行为, 整体吸引子

Abstract:

The paper studies the longtime behavior of solutions to the initial boundary value problem (IBVP) of the Kirchhoff type equation with strong damping utt-M(\||\nabla u||{2})Δuut+g(x, u)+h(ut)=f(x), with M(s)=1+sm/2, m≥1. With two different methords, it proves that the related continuous semigroup S(t) posseses in phase space X=(H2(Ω)∩H01(Ω))×H01(Ω) a global attractor. At the end of the paper, an example is shown, which  indicates  the existence of nonlinear functions g(x, u) and h(ut).

Key words: Kirchhoff type equation,  Initial boundary value problem, Infinite-dimensional dynamical system,  Global solution, Longtime behavior of solutions, Global attractor

中图分类号: 

  • 35B40