[1] Mehrmann V. The Autonomous Linear Quadratic Control Problem. Theory and Numerical Solution(Springer Lecture Notes in Control and Infor Sci). Heidelberg: Springer, 1991
[2] Sima V. Algorithms for Linear-quadratic Optimization(Pure Appi Math). New York: Dekker, 1996
[3] Zhang K, Doyle J, Glover K. Robust and Optimal Control. New Jersey: Upper Saddle River, Prentice-Hall, 1995
[4] Laub A. Invariant Subspace Methods for the Numerical Solution of Riccati Equations (The Riccati Equation, ed Bittanti S, Jaub A and Willems J). Berlin: Springer, 1991: 163--196
[5] 孙继广. 实对称矩阵的两类逆特征反问题. 计算数学, 1988, 3: 282--290
[6] Boor de C, Golub G H. The numerically stable reconstruction of a Jacobi matrix from spectral data. Linear Algebra and Application, 1978, 21: 245--260
[7] Boley D, Golub G H. Inverse Eigenvalue Problems for Band Matrices (Proc. Dundee Conf. on Numerical Analysis). Berlin: Springer, 1997
[8] Bai Z J. The inverse eigenproblem of centrosymmetric matrices with a submatrix constraint and its approximation. SIAM J Matrix Anal Appl, 2005, 26: 1100--1114
[9] 胡锡炎, 张磊, 谢冬秀. 双对称矩阵逆特征值问题解存在的条件. 计算数学, 1998, 3: 409--418
[10] Bai Z J, Chan R H. Inverse eigenproblem for centrosymmetric and centroskew matrices and their approximation. Theor Comput Sci, 2004, 315: 309--318
[11] Bai Z J. The solvability conditions for the inverse eigenvalue problem of Hermitian and generalized skew-Hamiltonian matrices and its approximation. Inerse Problems, 2003, 19: 1185--1194
[12] 张忠志, 胡锡炎, 张磊. 线性流形上Hermite -广义反Hamilton矩阵反问题的最小二乘解. 计算数学, 2003, 2: 209--218
[13] 张忠志, 胡锡炎, 张磊. 线性流形上反埃尔米特广义汉密尔顿矩阵的最小二乘问题与最佳逼近问题. 数学物理学报, 2006, 26A(6): 978--986
[14] 孙继广. 矩阵扰动分析. 北京:科学出版社, 2001
[15] 莫荣华, 黎稳. Hermite矩阵特征值的新扰动界. 应用数学学报, 2006, 6: 1033--1038
[16] Golub G H, Van Loan C F. Matrix Computations. Baltimore: Johns Hopkins University Press, 1996 |