数学物理学报 ›› 2011, Vol. 31 ›› Issue (2): 378-386.

• 论文 • 上一篇    下一篇

散度-旋度场的正则性及其应用

高红亚1,2|韩晓盼1   

  1. 1.河北大学 数学与计算机学院 河北 保定 071002|2.河北省数学研究中心 石家庄 050016
  • 收稿日期:2009-09-07 修回日期:2010-05-08 出版日期:2011-04-25 发布日期:2011-04-25
  • 基金资助:

    国家自然科学基金(10971224)和河北省自然科学基金(A2011201011)资助

Regularity Results for Div-Curl Fields and Applications

 GAO Hong-Ya1,2, HAN Xiao-Fan1   

  1. 1.College of Mathematics and Computer Science, Hebei University, Hebei Baoding 071002|2.Hebei Privincial Center of Mathematics, Shijiazhuang 050016
  • Received:2009-09-07 Revised:2010-05-08 Online:2011-04-25 Published:2011-04-25
  • Supported by:

    国家自然科学基金(10971224)和河北省自然科学基金(A2011201011)资助

摘要:

证明了散度-旋度向量场(B, E)∈Llocq(1-ε)(Ω, RnLlocp(1-ε) (Ω, Rn) 的高阶可积性, 这里1< p, q <∞, 1/p + 1/q =1, ε 充分小, divB =0, curl E
= 0满足逆不等式

B |q + | E |p ≤C <B, E> + | F |q,
其中F ∈Lr (Ω, Rn), r > q (1-ε) . 给出了上述结果在弱拟正则映射和非齐次A -调和方程

divA (x, \nabla u) = div F
很弱解中的应用.

关键词: 正则性, 散度-旋度场, 逆H\"older不等式

Abstract:

The aim of the present paper is to prove higher integrability results for div-curl vector fields B, E)∈Llocq(1-ε)(Ω, RnLlocp(1-ε) (Ω, Rn) , 1< p, q <∞, 1/p + 1/q =1, ε sufficiently small, such that divB =0, E= 0 satisfying a reverse inequality of the type
B |q + | E |p ≤C <B, E> + | F |q,
with F ∈Lr (Ω, Rn), r > q (1-ε) . Applications to the theory of weak quasiregular mappings and very weak solutions of nonhomogeneous A -harmonic equations
divA (x, \nabla u) = div F
are given.

Key words: Regularity, Div-curl vector field, Reverse H\"older inequality

中图分类号: 

  • 35J60