[1] Phelps R R. Support cones in Banach spaces and their applications. Advances in Mathematics, 1974, 13: 1--19
[2] Ng K F, Zheng X Y. Existence of efficient points in vector optimization and generalized Bishop-Phelps theorem. Journal of
Optimization Theory and Applications, 2002, 115: 29--47
[3] Hamel A H. Phelps' lemma, Danes' drop theorem and Ekeland's principle in locally convex spaces. Proceedings of the American
Mathematical Society, 2003, 31: 3025--3038
[4] 贺飞, 刘德, 罗成. 局部凸Hausdorff空间中的Drop定理和Phelps引理以及Ekeland变分原理. 数学学报(中文版), 2006, 49(5): 1145--1153
[5] Qiu J H. Local completeness, drop theorem and Ekeland's variational principle. Journal of Mathematical Analysis and Applications, 2005, 311: 23--39
[6] Wong C W. A drop theorem without vector topology. Journal of Mathematical Analysis and Applications, 2007, 329: 452--471
[7] Hogbe-Nlend H. Bornologies and Functional Analysis. Amsterdam: North-Holland, 1977
[8] Penot J P. The drop theorems,the Petal theorem and Ekeland's variational principle. Nonlinear Analysis, 1986, 10(9): 813--822
[9] Georgiev P G. The strong Ekeland variational principle, the strong drop theorem and applications. Journal of Mathematical
Analysis and Applications, 1988, 131(1): 1--21
[10] 郑喜印. 拓扑线性空间中的Drop定理. 数学年刊(A辑), 2000, 21(2): 141--148
[11] 贺飞, 刘德. 拓扑线性空间中的Drop定理和Phelps引理以及Ekeland变分原理. 数学年刊(A辑), 2006, 27(4): 535--542
[12] Carreras Perez P, Bonet J. Barrelled Locally Convex Spaces. Amsterdam: North-Holland, 1987
[13] Qiu J H. Local completeness and drop theorem. Journal of Mathematical Analysis and Applications, 2002, 266: 288--297
[14] Ekeland L. Nonconvex minimization problems. Bulletin of the American Mathematical Society, 1979, 1: 443--474
\REF{
[15]} Danes J. A geometric theorem useful in
nonlinear functional analysis. Boll Un Mat Ital, 1972, {\bf6}:
369--372 |