[1] Chen B, Xiu N. A global linear and local quadratic non-interior continuation method for nonlinear complementarity
problems based on Chen-Mangasarian smoothing functions. SIAM Journal on Optimization, 1999, 9: 605--623
[2] Chen B, Harker P T. Smoothing approximations to nonlinear complementarity problems. SIAM Journal on Optimization, 1997, 7(1): 403--420
[3] Ma C, Chen X. The convergence of a one-step smoothing Newton method for $P_0$-NCP based on a new smoothing NCP-function. Journal of Computational and Applied Mathematics, 2008, 216(1): 1--13
[4] Jiang H. Smoothed Fischer-Burmeister Equation Methods for the Complementarity Problem. Technical Report. Parville, Victoria, Australia: Department of Mathematics, The University of Melbourne, 1997
[5] Qi L, Sun D, Zhou G. A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Mathematical Programming (Ser A), 2000, 87: 1--35
[6] Zhang L, Han J, Huang Z. Superlinear/quadratic one-step smoothing Newton method for P0-NCP. Acta Math Sinica, 2005, 26(2): 117--128
[7] Ferris M C, Pang J S. Engineering and economic applications of complementarity problems. SIAM Review, 1997, 39(3): 669--713
[8] Harker P T, Pang J S. Finite-dimensional variational inequality and non-linear complementarity problems: a survey of
theory, algorithms and applications. Mathematical Programming, 1990, 48(1): 161--220
[9]Chi X, Liu S. An infeasible-interior-point predictor-corrector algorithm for the second-order cone program. INFEASIBLE-INTERIOR-POINT PREDICTOR-CORRECTOR ALGORITHM FOR THE SECOND-ORDER CONE PROGRAM. Acta Mathematica Scientia, 2008, 28B(3): 551--559
[10]Han D. On the coerciveness of some merit functions for complementarity problems over symmetric cones. J Math Anal Appl, 2007, 336: 727--737
[11] Clark F H. Optimization and Non-smooth Analysis. New York: John Wiley and Sons, 1993
[12] Mifflin R. Semismooth and semiconvex functions in constrained optimization. SIAM Journal of Control Optimization, 1977, 15: 959--972
[13] Qi L, Sun J. A non-smooth version of Newton's method.Mathematical Programming, 1993, 58: 353--367
[14] 周长银, 贺国平, 王永丽. 基于有效约束识别技术的一个SSLE算法及其收敛性分析. 2007, 23(3): 535--543 |