数学物理学报 ›› 2011, Vol. 31 ›› Issue (1): 142-153.

• 论文 • 上一篇    下一篇

一类弱奇异边值问题的大范围收敛算法

周永芳1,2|崔明根1   

  1. 1.哈尔滨工业大学数学系 哈尔滨 150001|2.黑龙江科技学院数力系 哈尔滨 150027
  • 收稿日期:2008-11-08 修回日期:2010-03-03 出版日期:2011-02-25 发布日期:2011-02-25
  • 基金资助:

    黑龙江省自然科学基金(A201015)和黑龙江省教育厅科学技术研究项目(11541323)资助

A Kind of Large-range Convergence Algorithm for Weakly Regular Singular Boundary Value Problems

 ZHOU Yong-Fang1,2, CUI Ming-Gen1   

  1. 1.Department of Mathematics, Harbin Institute of Technology, Harbin 150001|2.Heilongjiang Institute of Science and Technology, Harbin |150027
  • Received:2008-11-08 Revised:2010-03-03 Online:2011-02-25 Published:2011-02-25
  • Supported by:

    黑龙江省自然科学基金(A201015)和黑龙江省教育厅科学技术研究项目(11541323)资助

摘要:

该文研究如下的弱奇异边值问题: (p(x)y')'=f(x, y),0<x≤1, 带有初值条件为p(x)=xb0g(x), 0≤b0<1, 边值条件为y(0)=Aαy(1)+β y'(1)=γ y'(0)=0, αy(1)+βy'(1)=γ (R.K.Pandey 和 Arvind K.Singh 给出了一种求解此问题的二阶有限差分方法[1]. 在再生核空间中讨论方程解的存在性, 给出一种新的迭代算法, 这种迭代算法是大范围收敛的. 给出数值算例并与R. K. Pandey 和Arvind K.Singh 给出的方法进行比较说明该文方法的有效性.

关键词: 奇异边值问题, 迭代方法, 解的存在性, 再生核空间

Abstract:

In this paper, the weakly regular singular boundary value problem (p(x)y')'=f(x, y), 0<≤1, with p(x)=xb0g(x), 0≤b0<1, and the boundary conditions y(0)=Aαy(1)+β y'(1)=γ, or y'(0)=0, αy(1)+βy'(1)=γ(R.K. Pandey and Arvind K. Singh presented the second order finite
difference methods[1] is considered. The existence of the solution and a new iterative algorithm which is large-range convergent are established for the problems in reproducing kernel space. Illustrative examples are included to demonstrate the validity and applicability of the technique through comparing the  method with the method given by R.K.Pandey and Arvind K.Singh.

Key words: Singular boundary value problem, Iterative method, Existence of solution, Reproducing kernel space

中图分类号: 

  • 34B16