数学物理学报 ›› 2011, Vol. 31 ›› Issue (1): 82-91.

• 论文 • 上一篇    下一篇

具有脉冲的Dirichlet边值问题的Lyapunov不等式及其应用

 翁爱治1, 孙继涛2   

  1. 1.上海政法学院经济管理系 上海 201701|.2.同济大学数学系 上海 200092
  • 收稿日期:2008-10-08 修回日期:2009-11-06 出版日期:2011-02-25 发布日期:2011-02-25
  • 基金资助:

    国家自然科学基金(60874027)和上海高校选拔培养优秀青年教师科研专项基金(szf08004)资助

Generalization of Lyapunov Inequality for |Dirichlet BVPs with Impulses and its Applications

 WENG Ai-Zhi1, SUN Ji-Tao2   

  1. 1.Department of Economics and Management, Shanghai University of Political Science and Law, Shanghai 201701; 2.Department of Mathematics, Tongji University, Shanghai 200092
  • Received:2008-10-08 Revised:2009-11-06 Online:2011-02-25 Published:2011-02-25
  • Supported by:

    国家自然科学基金(60874027)和上海高校选拔培养优秀青年教师科研专项基金(szf08004)资助

摘要:

该文首先研究具有脉冲的线性Dirichlet边值问题
$$\left\{
    \begin{array}{ll}
      x''(t)+a(t)x(t)=0, t\neq \tau_{k},  \\
      \Delta x(\tau_{k})=c_{k}x(\tau_{k}),\\
       \Delta x'(\tau_{k})=d_{k}x(\tau_{k}),  \\
      x(0)=x(T)=0,
    \end{array}
  \right. (k=1,2\cdots,m)
$$
给出该Dirichlet边值问题仅有零解的两个充分条件, 其中$a:[0,T]\rightarrow R$, $c_{k}, d_{k}, k=1,2,$ $\cdots,m$是常数, $0<\tau_{1}<\tau_{2}\cdots<\tau_{m} $$\left\{
    \begin{array}{ll}
      x''(t)+f(t,x(t))=0, t\neq \tau_{k}, \\
      \Delta x(\tau_{k})=I_{k}(x(\tau_{k})), \\
      \Delta x'(\tau_{k})=M_{k}(x(\tau_{k})),  \\
      x(0)=x(T)=0
    \end{array}
  \right. (k=1,2\cdots,m)
$$ 解的存在性和唯一性, 其中 $f\in C([0,T]\times
R,R)$, $I_{k},M_{k}\in C(R, R),k=1,2,\cdots,m$.
该文主要定理的一个推论将经典的Lyaponov不等式比较完美地推广到脉冲系统.

关键词: 脉冲;边值问题, Lyapunov不等式, Leray-Schauder度, 存在唯一性

Abstract:

In this paper,  first the authors obtain the nonexistence of nontrivial solutions for the linear Dirichlet boundary value problem with impulses
$$\left\{
    \begin{array}{ll}
      x''(t)+a(t)x(t)=0, t\neq \tau_{k},  \\
      \Delta x(\tau_{k})=c_{k}x(\tau_{k}),\\
       \Delta x'(\tau_{k})=d_{k}x(\tau_{k}),  \\
      x(0)=x(T)=0,
    \end{array}
  \right. (k=1,2\cdots,m)
$$  where $a:[0,T]\rightarrow R$, $c_{k}$ and $d_{k}$ are
constants, $k=1,2,\cdots,m$,  $\Delta
x(\tau_{k})=x(\tau_{k}^{+})-x(\tau_{k}^{-})$, $\Delta
x'(\tau_{k})=x'(\tau_{k}^{+})-x'(\tau_{k}^{-})$,
$0<\tau_{1}<\tau_{2}<\cdots<\tau_{m} Secondly, by applying Leray-Schauder degree, the authors obtain the existence and uniqueness of solutions for the nonlinear Dirichlet boundary value problem with impulses
$$\left\{
    \begin{array}{ll}
      x''(t)+f(t,x(t))=0, t\neq \tau_{k}, \\
      \Delta x(\tau_{k})=I_{k}(x(\tau_{k})), \\
      \Delta x'(\tau_{k})=M_{k}(x(\tau_{k})),  \\
      x(0)=x(T)=0,
    \end{array}
  \right. (k=1,2\cdots,m)
$$  where $f\in C([0,T]\times R, R)$,
$I_{k},M_{k}\in C(R,R)$,
$k=1,2,\cdots,m$.
 As a corollary of the  results, the Lyapunov inequality is extended to impulsive systems.

Key words: Impulses,  Boundary value problem, Lyapunov inequality, Leray-Schauder degree,  Existence and uniqueness

中图分类号: 

  • 34B37