数学物理学报 ›› 2010, Vol. 30 ›› Issue (6): 1503-1513.

• 论文 • 上一篇    下一篇

具有变号非线性项的多点边值问题的非平凡解

1栾世霞|2万菲菲|3张新光   

  1. 1.曲阜师范大学数学科学学院 山东曲阜 273165|2.烟台南山学院理学院 山东烟台 265713|3.烟台大学数学与信息科学学院 山东烟台 264005
  • 收稿日期:2008-12-08 修回日期:2009-12-14 出版日期:2010-12-25 发布日期:2010-12-25
  • 基金资助:

    国家自然科学基金(10771117)和山东省青年自然科学基金(Q2007A02, ZR2009AL016)资助

Nontrivial Solutions of Multi-point Boundary Value Problems with Sign-changing Nonlinear Terms

1LUAN Shi-Xia, 2WAN Fei-Fei, 3ZHANG Xin-Guang   

  1. 1.School of Mathematical Sciences, Qufu Normal University, Shandong Qufu 273165|2.College of Science, Yantai Nanshan College, Shandong Yantai 265713|3.Department of Mathematics and Informational Sciences, Yantai University, Shandong Yantai 264005
  • Received:2008-12-08 Revised:2009-12-14 Online:2010-12-25 Published:2010-12-25
  • Supported by:

    国家自然科学基金(10771117)和山东省青年自然科学基金(Q2007A02, ZR2009AL016)资助

摘要:

该文研究一类具有变号非线性项的m -点边值问题
$$ \left\{\begin{array}{l}(p(t)u'(t))'-q(t)u(t)+ h(t)f(t,u(t))=0,\quad 0 \disp cu(1)+dp(1)u'(1)=\sum_{i=1}^{m-2}\beta_{i}u(\xi_{i}), \end{array}\right.$$
其中$f\in C([0,1]\times (-\infty,+\infty),(-\infty,+\infty))$, $f$不要求非负和下方有界. 通过建立更一般的Leray-Schauder度理论和计算全连续域上的拓扑度, 得到了非平凡解的存在性结果.

关键词: 非平凡解, m -点边值问题, 奇异, Leray-Schauder度

Abstract:

In this paper, the authors consider a class of m-point  boundary value problems with changing sign nonlinearity $$ \left\{\begin{array}{l}
(p(t)u'(t))'-q(t)u(t)+ h(t)f(t,u(t))=0,\quad 0 where f ∈ C([0,1]×(-∞,+∞),(-∞,+∞)) is a sign-changing function, not necessarily nonnegative and bounded from below. By establishing a more general Leray-Schauder degree theory, and computing the topological degree of a completely continuous field, some existence results of nontrival solutions are obtained.

Key words: Nontrivial solutions, m-point boundary value problems, Singular, Leray-Schauder degree

中图分类号: 

  • 34B15| 34B25