[1] Carro M J, Raposo J A, Soria J. Recent developments in the theory of Lorentz spaces and weighted inequalities. Barcelna: Dept Appl Math and Analysis, Univ of Barcelna, 2000
[2] Chen W, Liu P D. Several weak-type weighted inequalities in Orlicz martingale classes. Acta Math Scientia, to appear
[3] Chen W, Liu P D. Weighted integral inequalities for the maximal geometric mean operator of martingales. J of Math Anal and Appl, 2010, 371: 821--831
[4] Chen W, Liu P D. Weighted mixed norm inequalities in martingale spaces. Math Inequalities and Appl, to appear
[5] Cwikel M. The dual of weak Lp. Ann Inst Fourier(Grenoble), 1975, 25: 85--126
[6] Cwikel M, Fefferman C. The canonical seminorm on weak L1. Studia Math, 1984, 78: 275--278
[7] Fefferman R, Soria F. The space wH1. Studia Math, 1987, 85: 1--16
[8] Grafakos L. Classical and modern Fourier analysis. Pearson Edu, Inc, 2004
[9] Herz C. Bounded mean oscillation and regulated martingales. Trans Amer Math Soc, 1974, 193: 199--215
[10] Hou Y L, Ren Y B. Vector-valued weak martingale Hardy spaces and atomic decompositions. Acta Math Hungar, 2007, 115(3): 235--246
[11] Jiao Y, Peng L H, Liu P D. Atom decompositions of Lorentz martingale spaces and applications. J of Func Spaces and Appl, 2009, 7(2): 153--166
[12] Jiao Y, Fan L P, Liu P D. Interpolation theorems on weighted Lorentz martingale spaces. Science in China, 2007, 50A(9): 1217--1226
[13] Jiao Y, Chen W, Liu P D. Interpolation for weak martingale Hardy spaces. Acta Math Sinica, 2009, 25B(8): 1297--1304
[14] Jiao Y, Liu P D, Peng L H. Interpolation for martingale Hardy spaces over weighted measure spaces. Acta Math Hungar, 2008, 120: 127--139
[15] Kalton N J. Linear operators on Lp for 0<p<1. Trans Amer Math Soc, 1980, 259: 319--355
[16] Kalton N J. Quasi-Banach Spaces, Handbook of the Geometry of Banach Spaces. Amsterdam: Elseviser, 2003: 1100--1130
[17] Kikuchi M. On weighted weak type maximal inequalities for martingales. Math Ineq & Appl, 2003, 6(1): 163--175
[18] Kikuchi M. New martingale inequalities in rearrangement-invariant function spaces. Proc of the Edinburgh Math Society, 2004, 47: 633--657
[19] Kokilashvili V, Krbec M. Weighted inequalities in Lorentz and Orlicz spaces. Singapore: World Sci Pub Co Pte Ltd, 1991
[20] Li Y F, Liu P D. Weak Atomic decomposition for B-valued martingales with two-parameters. Acta Math Hungar, 2010, 127(3): 225--238
[21] Li Y F, Liu P D. Atomic decomposition for weak martingales with two indexes. Chinese Ann of Math, 2008, 29A: 333--342
[22] Liu N, Liu P D. A Marcinkiewicz-type interpolation theorem for wLp spaces and its applications. J Syst Sci and Math Sci, to appear
[23] Liu N, Ye Y. Several basic convergence theorems in weak Orlicz space. Acta Math Scientia, 2010, 30B(5): 1439--1452
[24] Liu P D. Martingales and Geometry of Banach Spaces. Beijing: Science Press, 2007
[25] Liu P D, Hou Y L. Atomic decompositions for Banach-space-valued martingales. Sciences in China, 1998, 41A: 884--892
[26] Liu P D, Yu L. Atomic decompositions and small index spaces of Banach-space-valued martingales. Science in China, 2001, 44A: 615--625
[27] Liu P D, Hou Y L, Wang M F. Weak Orlicz space and its applications to martingale theory. Science China Mathematics, 2010, 53(4): 905--916
[28] Long R L. Martingale Spaces and Inequalities. Beijing: Peking Univ Press, 1993
[29] Ma T, Liu P D. Atomic decomposition and duals of weak Hardy spaces of B-valued martingales. Acta Math Scientia, 2009, 29B(5): 1439--1452
[30] Mei T, Liu P D. On the maximal inequalities for martingales involving two functions. Proc Amer Math Soc, 2001, 130: 883--892
[31] Nakai E. Orlicz-Morrey spaces and the Hardy-Littlewood maxmal function. Studia Math, 2008, 188: 193--221
[32] Ren Y B, Hou Y L. Two-weighted weak-maximal inequalities for martingales. Acta Math Scientia, 2009, 29B(2): 402--408
[33] Weisz F. Martingale Hardy spaces and their applications in Fourier analysis. LNM, 1994: 1568
[34] Weisz F. Weak martingale Hardy spaces. Prob Math Stat, 1998, 18: 133--148
[35] Weisz F. Bounded operators on weak Hardy spaces and applications. Acta Math (Hungar), 1998, 80: 249--264
[36] Zhang C Z, Liu P D. Weighted averange of Dirichlet kernals for Vilenkin-like system. Acta Math Scientia, 2009, 29B(1): 45--55
[37] Zhang C Z, Zhang X Y. Weighted average of Dirichlet kernels for two dimensional Vilenkin-like system. Science China Mathematics, 2010, 40(6): 593--602
[38] Zhang C Z, Chen L H, Liu P D. B-valued dyadic dwrivative. Wuhan Univ J Nat Sci, 2007, 12(6): 961--964
|