[1] Barron E N, Cannasa P, Jensen R, Sinestrari C. Regularity of Hamilton-Jacobi equations when forward is backward. Indiana Univ Math J, 1999, 48: 395--409
[2] Bardi M, Evans L C. On Hopf's formulas for solutions of Hamilton-Jacobi equations. Nonlinear Anal, Theory, Methods \& Applications, 1984, 8: 1373--1381
[3] Conway E, Hopf E. Hamilton's theory and generalized solutions of the Hamilton-Jacobi equation. J Math Mech, 1964, 13: 939--986
[4] Evans L C. Partial Differential Equations. Providence, RI: American Mathematical Society, 1998
[5] Hopf E. Generalized solutions of nonlinear equations of first order. J Math Mech, 1965, 14: 951--973
[6] Hoang N. The regularity of generalized solutions of Hamilton-Jacobi equations. Nonlinear Anal, 2004, 59: 745--757
[7] Kruzkov S N. Generalized solutions of nonlinear first order equations with several variables. II Math Sbornik, 1967, 1: 93--116
[8] Lions P L. Generalized Solutions of Hamilton-Jacobi Equations. London: Pitman Advance Publishing Program, 1982
[9] Van T D, Hoang N, Thai Son N D. Explicit global Lipschitz solutions to first-order nonlinear partial differential equations. Viet J Math, 1999, 27(2): 93--114
[10] Van T D, Hoang N, Tsuji M. On Hopf's formula for Lipschitz solutions of the Cauchy problem for Hamilton-Jacobi equations. Nonlinear Anal, 1997, 29(10): 1145--1159
[11] Van T D, Tsuji M, Thai Son N D. The characteristic method and its generalizations for first order nonlinear PDEs. London/Boca Raton, Fl: Chapman & Hall/CRC, 2000
[12] Zhao Y, Tang T, Wang J. Regularity and global structure of solutions to Hamilton-Jacobi equations I. Convex Hamiltonian. J Hyperbol Differ Eq, 2008, 5(3): 663--680
[13] Tang T, Wang J H, Zhao Y. Regularity and global structure of solutions to Hamilton-Jacobi equations II. Convex initial data. J Hyperbol Differ Eq, 2009, 6(4): 709--723
|