数学物理学报 ›› 2010, Vol. 30 ›› Issue (4): 1111-1116.

• 论文 • 上一篇    下一篇

与广义p-Laplace算子相关的非线性边值问题在Ls(Ω)空间中解的存在性

魏利   

  1. School of Mathematics and Statistics, Hebei University of Economics and Business, Shijiazhuang 050061
  • 收稿日期:2006-12-10 修回日期:2009-08-07 出版日期:2010-07-25 发布日期:2010-07-25
  • 基金资助:

    国家自然科学基金(10771050)、河北省教育厅科学研究计划项目(2009115)和河北省自然科学基金(A2010001482)资助

The Existence of Solution of Nonlinear Boundary Value Problem Involving the Generalized p-Laplacian Operator in {\boldmath Ls(Ω)

河北经贸大学 数学与统计学学院 石家庄 050061   

  • Received:2006-12-10 Revised:2009-08-07 Online:2010-07-25 Published:2010-07-25

摘要:

该文利用非线性增生映射值域的扰动理论研究了与广义p-Laplace算子相关的Neumann边值问题在Ls(Ω)空间中解的存在性, 其中2 ≤p ≤ s < +∞. 文中采用了一些新的证明技巧, 推广和补充了笔者以往的一些工作.

关键词: 增生映射, 单调算子, demi连续映射, 广义p-Laplace算子

Abstract:

By using the perturbation results on ranges of nonlinear accretive mappings, the existence of solution of Neumann boundary value problem involving the generalized p-Laplacian operator in Ls(Ω) space is discussed in this paper, where 2 ≤ p ≤ s < + ∞. Some new techniques are used here to prove the main result which can be regarded as a continuation and complement to some of  the previous works.

Key words: Accretive mapping, Monotone operator, Demi-continuous mapping, Generalized p-Laplacian operator

中图分类号: 

  • 47H09