数学物理学报 ›› 2010, Vol. 30 ›› Issue (3): 776-783.

• 论文 • 上一篇    下一篇

求矩阵方程AXB+CXD=F的中心对称最小二乘解的迭代算法

尚丽娜1, 2|张凯院1   

  1. 1. 西北工业大学应用数学系 西安 710072|2. 中国飞行试验研究院测试所 西安 710089
  • 收稿日期:2007-12-12 修回日期:2009-08-30 出版日期:2010-05-25 发布日期:2010-05-25
  • 基金资助:

    陕西省自然科学基金(2006A05)资助

An Iterative Method for the Least Squares Centrosymmetric Solution of the Matrix Equation AXB+CXD=F

SHANG Li-Na1, 2, ZHANG Kai-Yuan1   

  1. 1. Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072|2. Department of Test, Chinese Flight Test Establishment, Xi'an 710089
  • Received:2007-12-12 Revised:2009-08-30 Online:2010-05-25 Published:2010-05-25
  • Supported by:

    陕西省自然科学基金(2006A05)资助

摘要:

该文建立了求矩阵方程$AXB+CXD=F$的中心对称最小二乘解的迭代算法.使用该算法不仅可以判断该矩阵方程的中心对称解的存在性, 而且无论中心对称解是否存在,都能够在有限步迭代计算之后得到中心对称最小二乘解. 选取特殊的初始矩阵时,可求得极小范数中心对称最小二乘解. 同时, 也能给出指定矩阵的最佳逼近中心对称矩阵.

关键词: 矩阵方程, 中心对称矩阵, 最小二乘解, 极小范数解, 迭代算法, 最佳逼近

Abstract:

An iterative method is presented to solve the minimum Frobenius norm residual problem: min AXB+CXD-F with unknown centrosymmetric matrix X. By this iterative method, for any initial centrosymmetric matrix X0, a solution X* can be obtained automatically within finite iteration steps in the absence of roundoff errors, and the solution X* with least Frobenius norm can be obtained by choosing a special initial centrosymmetric matrix. In addition, its optimal approximation matrix to a given matrix can be obtained. Numerical examples are given to show that the intertive method is quite efficient.

Key words: Matrix equation, Centrosymmetric matrix, Least squares solution, Least-norm solution, Iterative method, Optimal approximation

中图分类号: 

  • 15A24