[1] Fujita H. On the blowing up of solutions to the Cauchy problem for u t=?u+u1+α. J Fac Sci Univ Tokyo, Sect 1A Math, 1966, 13: 109--124
[2] Hayakawa K. On nonexistence of global solutions of some semilinear parabolic differential equations. Proc Japan Acad Ser A, 1973, 49: 503--505
[3] Kobayashi K, Siaro T, Tanaka H. On the blowing up problem for semilinear heat equations. J Math Soc Japan, 1977, 29: 407--424
[4] Weissler F B. Existence and nonexistence of global solutions for a semilinear heat equation. Isreal J Math, 1981, 38: 29--40
[5] Kartsatos A, Kurta V. On a Liouville-type theorem and the fujita blow-up phenomenon. Proc Amer Math Soc, 2003, 132: 807--813
[6] Galaktionov V A, Kurdyumov S P, Mikhailov A P, Samarskiii A A. Unbounded solutions of the Cauchy problem for the parabolic equation ut=\nabla(uα\nablau)+u^\beta$. Soviet Phys Dokl, 1980, 25: 458--459
[7] Qi Y W. Critical exponents of degenerate parabolic equations. Sci China Ser A, 1995, 38: 1153--1162
[8] Zhao J N. On the Cauchy problem and initial traces for evolution p-Laplacian equations with strongly nonlinear sources. J Differential Equations, 1995, 121: 329--383
[9] Deng K, Levine H A. The role of critical exponts in blow-up theorems: the sequel. J Math Anal Appl, 2000, 243: 85--126
[10] Galaktionov V A, Pohozaev S I. Blow-up and critical exponents for parabolic equations with non-divergent operators: dual porous medium and thin film operators. J Evol Equ, 2006, 6: 45--69
[11] Hu Z J. A Liouville theorem for a class of nonlinear elliptic equations. Acta Mathematica Scientia, 2000, 20(4): 474--479
[12] Kartsatos A, Kurta V. On blow-up results for solutions of inhomogeneous evolution equations and inequalities. J Math Anal Appl, 2004, 290: 76--85
[13] Levine H A. The role of critical exponts in blow-up theorems. SIAM Review, 1990, 32: 262--288
[14] Mitidieri E, Pohozaev S I.Nonexistence of weak solutions for some degenerate elliptic and parabolic problems. J Evol Equ, 2001, 1: 189--220
[15] Pang P Y H, Sun F, Wang M X. Existence and non-existence of global solutions for a higher-order semilinear parabolic system. Indiana University Mathematics Journal, 2006, 55(33): 1113--1134
[16] Zheng T T, Zhao J N. A note to the Cauchy problem for the degenerate parabolic equations with strongly nonlinear sources. preprint |