[1] Cho Y, Kim H. Existence results for viscous polytropic fluids with vacuum. J Differential Equations, 2006, 228: 377--411
[2] Choe H J, Kim H. Strong solutions of the Navier-Stokes equations for isentropic compressible fluids. J Differential Equations, 2003, 190: 504--523
[3] Fan J, Yu W. Strong solution to the compressible magnetohydrodynamic equations with vacuum. Nonlinear Analysis: Real World Applications, 2009, 10(1): 392--409
[4] Fan J, Zhou Y. Regularity criteria of weak solutions for the 3D viscous magnetohydrodynamic equations. Submitted, 2008
[5] Feireisl E. Dynamics of Viscous Compressible Fluids. Oxford: Oxford Science Publications, Clarendon Press, 2003
[6] He C, Xin Z. On the regularity of weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2005, 213: 235--254
[7] Hoff D. Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow. SIAM J Math Anal, 2006, 37: 1742--1760
[8] Lemarié-Rieusset P G. Recent Developments in the Navier-Stokes Problem. Boca Raton, FL: Chapman & Hall/CRC, 2002
[9] 李大潜, 秦铁虎. 物理学与偏微分方程(第二版)上册. 北京: 高等教育出版社, 2005
[10] Lions P L. Mathematical Topic in Fluid Mechanics. Oxford Lecture Series in Mathematics and its Applications. Oxford: Clarendon Press, 1998
[11] Maz'ya V G. On the theory of the $n$-dimensional Schr\"{o}dinger operator. Isv Akad Nauk SSSR (Ser Mat), 1964, 28: 1145--1172
[12] Maz'ya V G, Shaposhnikova T O. Theory of Multipliers in Spaces of Differentiable Functions, Monographs and Studies in Mathematics 23. Bostan: Pitman, 1985
[13] Moreau R. Magnetohydrodynamics. Dordredht: Klumer Academic Publishers, 1990
[14] Polovin R V, Demutskii V P. Fundamentals of Magnetohydrodynamics. New York: Consultants, Bureau, 1990
[15] Strohmer G. About compressible viscous fluid flow in a bounded region. Pacific J Math, 1990, 143: 359--375
[16] Vol'pert A I, Hudjaev S I. On the Cauchy problem for composite systems of nonlinear differential equations. Math USSR-Sb, 1972, 16: 517--544
[17] Zhou Y. Remarks on regularities for the 3D MHD equations. Disc Cont Dyna Sys, 2005, 12: 881--886
[18] Zhou Y. Regularity criteria for the 3D MHD equations in terms of the pressure. Int J Non-Linear Mech, 2006, 41(10): 1174--1180
[19] Zhou Y. Regularity criteria for the generalized viscous MHD equations. Ann I H Poincar\'{e} - AN, 2007, 24(3): 491--505
[20] Zhou Y, Gala S. Regularity criteria for the solutions to the 3D MHD equations in the multiplier space. Submitted, 2008 |