[1] Rorres C, Fair W. Optimal Age Specific Harvesting Policy for a Continuous-time Population Model. In: Burton T A ed. Modelling and Differential Equations in Biology. New York: Marcel Dekker, 1980: 239--254
[2] Brokate M. Pontryagin's principle for control problems in age-dependent population dynamics. J Math Biol, 1985, 23: 75--101
[3] Ani\c{t}a S. Optimal harvesting for a nonlinear age-dependent population dynamics. J Math Anal Appl, 1998, 226: 6--22
[4] Aniat S, Iannelli M, Kim E J, et al. Optimal harvesting for periodic age-dependent population dynamics. SIAM J Appl Math, 1998, 58(5): 1648--1666
[5] Busoni G, Matucci S. A problem of optimal harvesting policy in two-stage age-dependent populations. Math Biosci, 1997, 143:1-33
[6] Murphy L F, Smith S J. Maximum sustainable yield of a nonlinear population model with continuous age structure. Math Biosci, 1991, 104: 259--270
[7] Murphy L F, Smith S J. Optimal harvesting of an age-structured population. J Math Biol, 1990, 29: 77--90
[8] Anita S. Analysis and Control of Age-dependent Population Dynamics. Dordrcht, Boston, London: Kluwer Academic Publishers, 2000
[9] He Z R, Wang M, Ma Z. Optimal birth control problems for nonlinear age-structured population dynamics. Discrete and Continuous Dynamical Systems, Series B, 2004, 4(3): 589--594
[10] Ainseba B, Langlais M. On a population dynamics with age dependence and spacial structure. J Math Anal Appl, 2000, 248: 455--474
[11] Barbu V, Iannelli M, Martcheva M. On the controllability of the Lotka-McKendrick model of population
dynamics. J Math Anal Appl, 2001, 253: 142--165
[12] Ainseba B. Exact and approximate controllability of the age and space population dynamics structured model.J Math Anal Appl, 2002, 562--574
[13] Barbu V, Iannelli M. Optimal control of population dynamics. J Optim Theory Appl, 1999, 102: 1--14
[14] Chan W L, Guo B Z. Optimal birth control of population dynamics. J Math Anal Appl, 1989, 144: 532--552
[15] Chan W L, Guo B Z. Optimal birth control of population dynamics II: Problems with free final time, phase constraints, and mini-max costs. J Math Anal Appl, 1990, 146: 523--539
[16] He Z R. Optimal birth control of age-dependent competitive species. J Math Anal Appl, 2004, 296: 286--301
[17] He Z R. Optimal birth control of age-dependent competitive species II: Free horizon problems. J Math Anal Appl, 2005, 305: 11--28
[18] He Z R. Optimal harvesting of two competing species with age-dependence. Nonlinear Analysis: RWA, 2006, 7: 769--788
[19] 何泽荣. 具有年龄结构的捕食种群系统的最优收获策略. 系统科学与数学, 2006, 26(4): 467--483
[20] Luo Z, He Z R, Li W T. Optimal birth control for predator-prey system of three species with age-structure. Applied Mathematics and Computation, 2004, 155: 665--685
[21] Luo Z, He Z R, Li W T. Optimal birth control for an age-dependent food chain model. J Math Anal Appl, 2003, 287: 557--576
[22] Zhao C, Wang M, Zhao P. Optimal harvesting problems for age-dependent interacting species with diffusion. Applied Mathematics and Computation, 2005, 163: 117--129
[23] Iannelli M. Mathematical Theory of Age-structured Population Dynamics. Pisa: Giardini Editori E Stampatori, 1994
[24] Yosida K. Functional Analysis. Berlin: Springer-Verlag, 1980
[25] Girsanov I V. Lectures on Mathematical Theory of Extremum Problems. Berlin, Heidelberg, New York: Springer-Verlag, 1972
[26] 雒志学, 王绵森. 具有年龄结构的线性周期种群动力系统的最优收获控制问题. 数学物理学报, 2005, 25(6): 905--912 |