[1] Alves C, Souto M. Existence of solutions for a class of problems in RN involving p(x)-Laplacian. Prog Nonlinear Differential Equations Appl, 2005, 66: 17--32
[2] Edmunds D, Lang J, Nekvinda A. On Lp(x) norms. Proc R Soc, A, 1999, 455: 219--225
[3] Edmunds D, Rákosník J. Sobolev embedding with variable exponent. Studia Math, 2000, 143: 267--293
[4] Fan X L, Jia C. Existence of infinitely many solutions for a Neumann problem involving the p(x)-Laplacian. J
Math Anal Appl, 2007, 334: 248--260
[5] Fan X L, Han X. Existence and multiplicity of solutions for p(x)-Laplacian equations in RN. Nonlinear Anal, 2004, 59: 173--188
[6] Fan X L, Zhao Y, Zhao D. Compact imbedding theorems with symmetry of Strauss-Lions type for the space
W1, p(x)(Ω). J Math Anal Appl, 2001, 255: 333--348
[7] Fu Y. Existence of solutions for p(x)-Laplacian problem on an unbounded domain. Topol Methods Nonlinear Anal, 2007, 30: 235--249
[8] Fu Y, Zhang X. A multiplicity result for p(x)-Laplacian problem in RN. Nonlinear Anal, 2009, 70(6): 2261--2269
[9] Kovacik O, Rakosnik J. On spaces Lp(x) and Wk, p(x). Czechoslovak Math J, 1991, 41: 592--618
[10] Ruzicka M. Electro-Rheological Fluids: Modeling and Mathematical Theory. Berlin: Springer-Verlag, 2000
[11] Struwe M. Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Heidelberg: Springer, 1996
[12] Zhang Q. Existence of radial solutions for p(x)-Laplacian equations in RN. J Math Anal Appl, 2006, 315: 506--516 |