数学物理学报 ›› 2001, Vol. 21 ›› Issue (4): 559-569.

• 论文 • 上一篇    下一篇

一簇Lorenz映射的混沌行为与统计稳定性

 丁义明, 范文涛   

  1. 北京师范大学系统科学系 北京100875 中国科学院武汉物理与数学研究所 武汉430071
  • 出版日期:2001-10-26 发布日期:2001-10-26
  • 基金资助:

    国家自然科学基金资助项目(19847005,69874039)

The Chaotic Behavior and Statistically Stable Behaviour of a Family of Lorenz Maps

 DING Yi-Ming, FAN Wen-Tao   

  1. 北京师范大学系统科学系 北京100875 中国科学院武汉物理与数学研究所 武汉430071
  • Online:2001-10-26 Published:2001-10-26
  • Supported by:

    国家自然科学基金资助项目(19847005,69874039)

摘要:

该文研究一簇Lorenz映射犛犪:[0,1]→[0,1](0<犪<1)犛犪(狓)=狓+犪 狓∈ [0,1-犪){(狓+犪-1)/犪 狓∈ [1-犪,1].从拓扑的角度考虑了犛犪的混沌行为,证明了:犛犪有稠密轨道;犛犪的周期的集合犘犘(犛犪)={1,犿+1,犿+2,…},其中犿为使犪犿<1-犪成立的最小正整数;犛犪的拓扑熵犺(犛犪)>0;几乎所有(关于Lebesgue测度)的点狓的Lyapunov指数λ(犛犪,狓)=λ犪>0.从统计的角度讨论了犛犪的稳定性.我们用下界函数方法证明了犛犪是统计稳定的,并且狌犵犪(犃)=∫犃犵犪(狓)d狓(犃∈犅)为犛犪的唯一绝对连续(关于Lebesgue测度)不变概率测度.同时,不变密度犵犪在参数扰动和随机作用的随机扰动下是稳定的.

关键词: Lorenz映射, 混沌, FrobeniusPerron算子, 不变密度, 统计稳定, 参数扰动, 随机作用的随机扰动

Abstract:

该文研究一簇Lorenz映射犛犪:[0,1]→[0,1](0<犪<1)犛犪(狓)=狓+犪 狓∈ [0,1-犪){(狓+犪-1)/犪 狓∈ [1-犪,1].从拓扑的角度考虑了犛犪的混沌行为,证明了:犛犪有稠密轨道;犛犪的周期的集合犘犘(犛犪)={1,犿+1,犿+2,…},其中犿为使犪犿<1-犪成立的最小正整数;犛犪的拓扑熵犺(犛犪)>0;几乎所有(关于Lebesgue测度)的点狓的Lyapunov指数λ(犛犪,狓)=λ犪>0.从统计的角度讨论了犛犪的稳定性.我们用下界函数方法证明了犛犪是统计稳定的,并且狌犵犪(犃)=∫犃犵犪(狓)d狓(犃∈犅)为犛犪的唯一绝对连续(关于Lebesgue测度)不变概率测度.同时,不变密度犵犪在参数扰动和随机作用的随机扰动下是稳定的.

Key words: Lorenz映射, 混沌, FrobeniusPerron算子, 不变密度, 统计稳定, 参数扰动, 随机作用的随机扰动

中图分类号: 

  • 37A25