[1] Ditzian Z. Direct estimate for Bernstein polynomials. J Approx Theory, 1994, 79: 165--166
[2] Ditzian Z, Totik V. Moduli of Smoothness. Berlin, New York: Springer-Verlag, 1987: 1--200
[3] Ditzian Z, Jiang D. Approximation by polynomials in C
[-1,1]. Canad J Math, 1992, 44: 924--940
[4] Ditzian Z, Jiang D, Leviatan D. Simultaneous polynomials approximation. SIAM J Math Anal, 1993, 24: 1652--1661
[5] Felten M.Direct and inverse estimates for Bernstein polynomials. Constr Approx, 1998, 14: 459--468
[6] Lorentz G G. Bernstein Polynomials. Toronto: University of Toronto Press, 1953: 1--60
[7] Derrieinnic M M. Sur l'approximation de fonctions intégrable sur
[ 0,1] par des polynomes de Bernstein modifiés. J Approx Theory, 1981, 31: 325--343
[8] Gonska H H, Zhou X L. A global inverse theorem on simultaneous approximation by Bernstein-Durrmeyer operators. J Approx Theory, 1991, 67: 284--302
[9] Mache D H. Equivalence theorem on weighted simultaneous Lp-approximation by the method of Kantorovich operators. J Approx
Theory, 1994, 78: 321--350
[10] Agrawal P N. Inverse theorem in simultaneous approximation by Micchelli combination of Bernstein polynomials. Demonstratio
Math, 1998, 31(1): 55--62
[11] Agrawal P N, Kareem J T. Approximation of unbounded functions by a new sequence of linear positive operators. J Math Anal Appl, 1998, 225: 660--672
[12] Butzer P L. Linear combinations of Bernstein polynomials. Canad Math J, 1953, 5: 559--567
[13] Ditzian Z. A global inverse theorem for combinations of Bernstein polynomials. J Approx Theory, 1979, 26: 277--292
{
[14] Zhou D X. On smoothness characterized by Bernstein type operators. J Approx Theory, 1995, 81: 303--315
[15] Berens H, Lorentz G G. Inverse theorems for Bernstein polynomials. Indiana Univ Math J, 1972, 21: 693--708
[16] Ditzian Z. Derivatives of Bernstein polynomials and smoothness. Proc Amer Math Soc, 1985, 93: 25--31
|