[1] Akrivis G D, Dogalis V A, Karakashina O A. On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrodinger equation. Numer Math, 1991, 59: 31--53
[2] Akrivis G D. Finite difference discretization of the cubic Schr\"odinger equation. IMA J Numer Anal, 1993, 13: 115--124
[3] Sonnier W J, Christov C I. Strong coupling of Schrodinger equations: Conservative scheme approach. Math Comput Simul, 2005, 69: 514--525
[4] Lamb G L. Elements of Soliton Theorey. New York: John Wiley Sons,1980
[5] Ablowitz M J. Solitons and the Inverse Transform. Philadelpha: SIAM, 1981
[6] Hasegawa A. Optical Solitons in Fibers. Berlin: Springer-verlag, 1989
[7] Yang J. Multi Solitons perturbation theorey for themanakov equations and its applications to nonlinear optics. Phys Rev E, 1999, 59: 2393
[8] Gross E P. Hydrodynamics of a superfluid condensate. J Math Phys, 1963, 4: 195--207
[9] Pitaevskii L P. Vortex lines in an imperfect bose gas. Soviet Phys JETP, 1961, 13: 451--454
[10] Chang Q. Conservative difference scheme for nonlinear Schr\"{o}dinger equation. J Comp Math A, 1982, 4: 373--384
[11] Chang Q, Jiang H. A conservative difference scheme for the Zakharov equations. J Comput Phys, 1994, 113: 309--319
[12] Chang Q, Guo B, Jiang H. Finite difference method for the generalized Zakharov equations. Math Comput, 1995, 64: 537--553
[13] Zhang L. Convergence of a conservative difference scheme for a class of Klein-Gordon-Schrodinger equations in one space dimension. Appl Math Comput, 2005, 163: 343--355
[14] Wang T, Chen J, Zhang L. Conservative difference methods for the Klein-Gordon-Zakharov equations. J Comput Appl Math, 2007, 205: 430--452
[15] Zhang F, et al. Numerical simulation of nonlinear Schrodinger systems: a new conservative scheme. Appl Math Comput, 1995, 71: 165--177
[16] Li S, Vu-Quoc L. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM J Numer Anal, 1995, 32: 1839--1875
[17] Furihata D. Finite difference schemes for ∂u / ∂t =(∂/∂x)αδG / δu that inherit energy conservation or dissipation property. J Comput Phys, 1999, 156: 181--205
[18] Matsuo T, Furihata D. Dissipative or conservative finite difference schemes for complex-valued nonlinear partial differential equations. J Comput Phys, 2001, 171: 425--447
[19] 王廷春, 张鲁明. 对称正则长波方程的拟紧致守恒差分逼近. 数学物理学报, 2006, 26: 1039--1046
[20] 张静, 张鲁明, 陈娟. 非线性Schr\"odinger方程的一种数值模拟方法. 数学物理学报, 2007, 27A(6): 1111--1117
[21] Zhou Y. Application of Discrete Functional Analysis to the Finite Difference Methods. Beijing: International Academic Publishers, 1990
|