数学物理学报 ›› 2003, Vol. 23 ›› Issue (2): 161-168.

• 论文 • 上一篇    下一篇

广义共同逼近问题的适定性

 倪仁兴   

  1. 绍兴文理学院数学系
  • 出版日期:2003-04-25 发布日期:2003-04-25
  • 基金资助:

    基金项目:国家自然科学基金资助项目

On Well Posedness of Generalized Mutually Approximation Problem

 NI Ren-Xin-   

  • Online:2003-04-25 Published:2003-04-25
  • Supported by:

    基金项目:国家自然科学基金资助项目

摘要:

设C是实Banach空间X中有界闭凸子集且0是C的内点,G是X中非空闭的有界相对弱紧子集.记K(X)为X的非空紧凸子集全体并赋Hausdorff距离,KG(X)为集合{A∈K(X);A∩G=}的闭包.称广义共同逼近问题minC(A,G)是适定的是指它有唯一解(x0,z0),且它的每个极小化序列均强收敛到(x0,z0).在C是严格凸和Kadec的假定下,证明了{A∈K(X);minC(A,G)是适定的}含有KG(X)中稠Gδ子集,这本质地推广和延拓了包括De Blasi,Myjak and Papini[1]、Li[2]和De Blasi and Myjak[3]等人在内的近期相应结果.

关键词: 广义共同逼近问题;适定性;Minkowski泛函;有界相对弱紧集;极小化序列

Abstract:

Let C be a closed bounded convex subset of a realBanachspace X with 0 being an interior point of C. Let G be a nonempty closed, boundedly relatively weakly compact subset of X. Let K(X) denote the space ofall nonempty compact convex subset of X endowed with the Hausdorff distance. Moreover, Let KG(X) denote the closure of the set {A∈K(X);A∩G=}. A generalized mutually approximation problem minC(A,G) is said to be well posed if it hasa uniquesolution (x0,z0) and every minimizing sequence converges strongly to (x0,z0). Under the assumption that C is strictly convex and (sequentially) Kadec, that the set {A∈KG(X);minC(A,G) is well posed} contains a dense Gδsubset of KG(X) is proved. The results generalize and extend the recent corresponding results due to De Blasi, Myjak and Papini[1],Li[2],De Blasi andMyjak[3] and other authors.

Key words: Generalized mutually approximation problem, Well posedne ss, Minkowski functional, Boundedly relatively weakly compact set, Minimizing se quence.

中图分类号: 

  • 41A28