数学物理学报 ›› 2003, Vol. 23 ›› Issue (1): 84-90.

• 论文 • 上一篇    下一篇

具有平稳增量的自相似过程的边缘分布

钱能生   

  1. 五邑大学数学物理系
  • 出版日期:2003-02-25 发布日期:2003-02-25
  • 基金资助:

    国家自然科学基金资助课题

On Marginal Distribution of SelfSimilar\=Processes with Stationary Increments

 JIAN Nai-Sheng   

  • Online:2003-02-25 Published:2003-02-25
  • Supported by:

    国家自然科学基金资助课题

摘要:

设X=(X\-t)\-\{t≥0\} 是指数H(>0)型的具有平稳增量的自相似过程,该文给出了X\-1的边缘分布的一些结果。对于H≠1,log\++X\-1的压缩函数有一个只依赖于H的界;对于H>0,X\-1除了一些平凡的情形外是非原子的;而对于H>1,X\-1的尾分布的下界也给出了;文章的最后对X\-1的支撑的连通性给予了讨论并给出了一些结果。

关键词: 平稳增量;自相似过程;压缩函数

Abstract:

Let $X=(X\-t)\-t≥0$ be a realvalued stochastic process which is selfsimilar with parameter $H>0$ and has stationary increments. Several results about themarginal distribution of $X\-1$ are given for $H≠1, $there is a bound, depending only on $H$, on the concentration function of
log$X\++\-1$. For all $H>0,X\-1$ cannot have any atomsexcept in certain trivial cases. Some lower bounds are given for the tails of the distribution of $X\-1$ in case $H>1.$ Finally, some results are given concerning the connectedness of  the support of  $X\-1.$

Key words: Stationary increment, Selfsimilar prcesses, Concentration function.

中图分类号: 

  • 60F05