[1] Hörmander L. Hypoelliptic second order differential equations. Acta Math, 1967, 119: 147--171
[2] Garofalo N, Lanconelli E. Existence and nonexistence results for semilinear equations on the Heisenberg group. Indiana Univ Math J, 1992, 41: 71--98
[3] Capogna L, Danielli D, Garofalo N. Capacitary estimates and the local behavior of solutions of nonlinear subelliptic equations. Amer J Math, 1996, 118: 1153--1196
[4] D'Ambrosio L. Critical degenerate inequalities on the Heisenberg group. Manuscripta Math, 2001, 106: 519--536
[5] D'Ambrosio L, Lucente S. Nonlinear {L}iouville theorems for Grushin and Tricomi operators. J Differential Equations, 2003, 193: 511--541
[6] El Hamidi A, Kirane M. Nonexistence results of solutions to systems of semilinear differential inequalities on the Heisenberg group. Abstr Appl Anal, 2004, 2: 155--164
[7] Lanconelli E, Uguzzoni F. Non-existence results for semilinear Kohn-Laplace equations in unbounded domains. Comm Partial Differential Equations, 2000, 25: 1703--1739
[8] Pohozaev S, Véron L. Nonexistence results of solutions of semilinear differential inequalities on the Heisenberg group. Manuscripta Math, 2000, 102: 85--99
[9] Kohn J J. Hypoellipticity and loss of derivatives. Ann of Math, 2005, 162: 943--986
[10] Beals R, Gaveau B, Greiner P. Uniforms hypoelliptic {G}reen's functions. J Math Pures Appl, 1998, 77: 209--248
[11] Zhang H, Niu P. Hardy-type inequalities and {P}ohozaev-type identities for a class of p-degenerate subelliptic operators and applications. Nonlinear Anal, 2003, 54: 165--186
[12] Kaplan A. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans Amer Math Soc, 1980, 258: 147--153
[13] Jin Y, Zhang G. Fundamental solutions for a class of degenerate p-{L}aplacian operators and applications to Hardy type inequalities. preprint, 2006.
[14] Greiner P. A fundamental solution for a nonelliptic partial differential operator. Canad J Math, 1979, 31: 1107--1120 |