数学物理学报 ›› 2009, Vol. 29 ›› Issue (5): 1426-1433.

• 论文 • 上一篇    下一篇

非线性四阶周期边值问题的最优正解

  

  1. 中国青年政治学院数学中心 北京 100089
  • 收稿日期:2007-06-04 修回日期:2008-10-15 出版日期:2009-10-25 发布日期:2009-10-25

Optimal Positive Solutions of a Nonlinear Fourth Order Periodic Boundary Value Problem

  1. Center of Mathematics, |China Youth University for Political Sciences, Beijing 100089
  • Received:2007-06-04 Revised:2008-10-15 Online:2009-10-25 Published:2009-10-25

摘要:

该文使用锥不动点定理研究了四阶周期边值问题u(4)-m4u+F(t, u(τ(t)))=0, 0 < t < 2π,  u(i)(0)=u(i)(2π),~ i=0,1, 2, 3, 这里 F: [0,2π ]×R+ R+ 和 τ: [0, 2π] →[0, 2π] 是连续的, 0m ∈ (0, M),  F满足适当的条件下, 证明此问题至少有两个正解, 这里 M 是方程 i=-tanh 的最小正根,  取值为0.7528094, 误差是±10-7.

关键词: 正解, 周期边值问题, 不动点定理

Abstract:

The fourth order periodic boundary value problem u(4)-m4u+F(t, u(τ(t)))=0, 0<t<2π, with u(i)(0)=u(i)(2π), i=0,1, 2, 3,  is studied by using the fixed point theorem in cones, where F:[0, 2π]×R+R+ and τ: [0, 2τi]→[0, 2π] are continuous and  0<m<1. Under suitable conditions on F, it is proved  that the problem  has at least two positive solutions if m ∈  (0, M), where M is the smallest positive root of the equation tan =-tanh , which takes the value 0.7528094 with an error of ±10-7.

Key words: Positive solutions, Periodic boundary value problem, Fixed point theorem

中图分类号: 

  • 34K20