[1]Airault H. Rational solution of Painlevé equation. Studies in Appl Math, 1979, 61: 31-53
[2]Adler M, Moser J. On a class of polynomials connected with the Korteweg de Vries equation. Communications in Math Physics, 1979, 61: 1-30
[3]Baesch A. Zur Werteverteilung der Painlevéschen Transzendenten.Berlin: M.Sc.thesis (Diplomarbeit) in Technische Universit
[AKa¨D]t,1992
[4]Gromak V I. The first higher order Painlevé equation.Differential Equations, 1999,35(1): 1-5
[5]Gromak V I,He Y. On the solutions of the second Painlevé equation of higher order.Proceed of Math Inst of Belarus National Academy of Sci,2000,4:37-48
[6]何育赞,萧修治。代数体函数与常微分方程。北京:科学出版社,1988
[7]Hinkkanen A,Laine I. Solutions of the first and second Painlevé equations are meromorphic.J Anal Math, 1999, 79: 345-377
[8]Laine I. Nevanlinna Theory and Complex Differential Equations.Berlin:W.de Gruyter,1993
[9]Li Yezhou, Feng Shaoji.On hyper order of meromorphic solutions of first order algebraic differential equations. Acta Mathematica Scientia, 2001,21B(3): 383-390
[10]Yezhou Li, Yuzan He. On analytic properties of higherorder analogue of the second Painlevé equation. J Math Phys, 2002, 43:1 106-1115
[11]Painlevé P. Lecons sur la Théorie Analytique des E〖DD(-*3〗′ 〖DD)quations Différentielles. Paris: Hérman, 1897
[12]Schubart H. Zur werteverteilung der Painlevéschen transzendenten. Arch math, 1996, 7: 284-290
[13]Shimomura S. Value distribution of Painlevé transcendents of the first and second kind. Journal D'analyse ma thématique , 2000, 82: 333-346
[14]Steinmetz N. Value distribution of the Painlevé equation. Israel J Math, 2002, 128:29-52
[15]Wittich H. Neuere Untersuchungen
[AKu¨D]ber Eindeutige Analytische Funktionen. Berlin: SpringerVerlag, 1968
|