数学物理学报 ›› 2025, Vol. 45 ›› Issue (3): 888-901.

• • 上一篇    下一篇

一类比例时滞随机神经网络的均方指数同步及应用

任红越(),周立群*()   

  1. 天津师范大学数学科学学院 天津 300387
  • 收稿日期:2024-08-14 修回日期:2025-01-22 出版日期:2025-06-26 发布日期:2025-06-20
  • 通讯作者: 周立群, Email: zhouliqun20000@163.com
  • 作者简介:任红越,Email: 2354303253@qq.com
  • 基金资助:
    国家自然科学基金(11901433);天津市自然科学基金(24JCYBJC00470)

Mean Square Exponential Synchronization of a Class of Proportional Delay Stochastic Neural Networks and Its Application

Ren Hongyue(),Zhou Liqun*()   

  1. School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387
  • Received:2024-08-14 Revised:2025-01-22 Online:2025-06-26 Published:2025-06-20
  • Supported by:
    NSFC(11901433);Natural Science Foundation of Tianjin(24JCYBJC00470)

摘要:

以一类比例时滞惯性随机神经网络作为驱动-响应系统, 通过降阶法, 采用状态反馈控制器, 利用 Itô 积分, 通过构造新颖的 Lyapunov 泛函和利用微积分性质分析所研究系统的均方指数同步, 得到所研究系统均方指数同步的判定准则. 最后, 通过数值算例及仿真验证所得判定准则的准确性, 并给出所研究的指数同步在图像加密和解密中的应用.

关键词: 随机神经网络, 惯性项, 均方指数同步, 比例时滞, 图像加密和解密

Abstract:

A class of proportional delay inertial stochastic neural networks is used as the driving-response systems. The mean square exponential synchronization of the studied system is analyzed by reducing the order method, adopting a state feedback controller, utilizing Itô integral, constructing a novel Lyapunov functional, and utilizing the properties of calculus. The criteria for determining the mean square exponential synchronization of the studied system are obtained. Finally, the accuracy of the judgment criteria obtained is verified through a numerical example and simulations, and the application of the studied exponential synchronization in image encryption and decryption is presented.

Key words: stochastic neural networks, inertia term, mean square exponential synchronization, proportional delay, encryption and decryption of image

中图分类号: 

  • O175.13