数学物理学报 ›› 2025, Vol. 45 ›› Issue (3): 756-766.
收稿日期:
2024-08-13
修回日期:
2025-01-13
出版日期:
2025-06-26
发布日期:
2025-06-20
通讯作者:
*孙歆, E-mail:sunxinwan3612@163.com
基金资助:
Received:
2024-08-13
Revised:
2025-01-13
Online:
2025-06-26
Published:
2025-06-20
Supported by:
摘要:
研究如下 Klein-Gordon-Maxwell 系统
中图分类号:
段誉, 孙歆. 一类 Klein-Gordon-Maxwell 系统解的存在性和多重性[J]. 数学物理学报, 2025, 45(3): 756-766.
Duan Yu, Sun Xin. Existence and Multiplicity of Solutions to a Class of Klein-Gordon-Maxwell Systems[J]. Acta mathematica scientia,Series A, 2025, 45(3): 756-766.
[1] | Benci V, Fortunato D. Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations. Rev Math Phys, 2002, 14(4): 409-420 |
[2] | Benci V, Fortunato D. The nonlinear Klein-Gordon equation coupled with the Maxwell equations. Nonlinear Anal, 2001, 47(9): 6065-6072 |
[3] | Li L, Tang C L. Infinitely many solutions for a nonlinear Klein-Gordon-Maxwell system. Nonlinear Anal, 2014, 110: 157-169 |
[4] | Jing Y T, Liu Z L. Elliptic systems with a partially sublinear local term. J Math Study, 2015, 48(3): 290-305 |
[5] | Wang L X, Xiong C L, Zhao P P. On the existence and multiplicity of solutions for nonlinear Klein-Gordon-Maxwell systems. Electron J Qual Theory Differ Equ, 2023, 19: 1-18 |
[6] | Liu X Q, Kang J C, Tang C L. Existence and concentration of positive solutions for Klein-Gordon-Maxwell system with asymptotically linear nonlinearities. J Math Phys, 2022, 63( 4): 041513 |
[7] | 段誉, 孙歆. 渐近线性 Klein-Gordon-Maxwell 系统正解的存在性. 数学物理学报, 2022, 42A(4): 1103-1111 |
Duan Y, Sun X. Existence of positive solutions for Klein-Gordon-Maxwell systems with an asymptotically linear nonlinearity. Acta Math Sci, 2022, 42A(4): 1103-1111 | |
[8] | He X M. Multiplicity of solutions for a nonlinear Klein-Gordon-Maxwell system. Acta Appl Math, 2014, 130(1): 237-250 |
[9] | Sun X, Duan Y, Liu J. Existence and multiplicity of nontrivial solutions for 1-Superlinear Klein-Gordon-Maxwell system. Appl Math Lett, 2024, 157: 109167 |
[10] |
D'Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schr![]() ![]() |
[11] | Wen X P, Chen C F. Existence and asymptotic behavior of nontrivial solutions for the Klein-Gordon-Maxwell system with steep potential well. Electron J Qual Theory Differ Equ, 2023, 17: 1-18 |
[12] | Chen S T, Tang X H. Infinitely many solutions and least energy solutions for Klein-Gordon-Maxwell systems with general superlinear nonlinearity. Comput Math Appl, 2018, 75(9): 3358-3366 |
[13] | 李易娴, 张正杰. 一类与 Klein-Gordon-Maxwell 问题有关的方程组的基态解的存在性. 数学物理学报, 2023, 43A(3): 680-690 |
Li Y X, Zhang Z J. The Existence of ground state solutions for a class of equations related to Klein-Gordon-Maxwell systems. Acta Math Sci, 2023, 43A(3): 680-690 | |
[14] |
Miyagaki O H, de Moura E L, Ruviaro R. Positive ground state solutions for quasicritical the fractional Klein-Gordon-Maxwell system with potential vanishing at infinity. Complex Variables and Elliptic Equations, 2019, 64: 315-329
doi: 10.1080/17476933.2018.1434625 |
[15] | Xu L P, Chen H B. Existence and multiplicity of solutions for nonhomogeneous Klein-Gordon-Maxwell equations. Electronic Journal of Differential Equations, 2015, 102: 1-12 |
[16] | Wu D L, Lin H X. Multiple solutions for superlinear Klein-Gordon-Maxwell equations. Mathematische Nachrichten, 2020, 293: 1827-1835 |
[17] | Shi H X, Chen H B. Multiple positive solutions for nonhomogeneous Klein-Gordon-Maxwell equations. Appl Math Comput, 2018, 337: 504-513 |
[18] | Liu X Q, Chen S J, Tang C L. Ground state solutions for Klein-Gordon-Maxwell system with steep potential well. Appl Math Lett, 2019, 90: 175-180 |
[19] | Wang L, Tang L Q, Sun J J. Infinitely many sign-changing solutions for a kind of fractional Klein-Gordon-Maxwell system. Fractional Calculus and Applied Analysis, 2023, 26(2): 672-693 |
[20] | Liu X Q, Tang C L. Infinitely many solutions and concentration of ground state solutions for the Klein-Gordon-Maxwell system. J Math Anal Appl, 2022, 505( 2): 125521 |
[21] | Gan C L, Xiao T, Zhang Q F. Improved results of nontrivial solutions for a nonlinear nonhomogeneous Klein-Gordon-Maxwell system involving sign-changing potential. Adv Differ Equ, 2020, 167: 1-16 |
[22] |
Chen S J, Song S Z. Multiple solutions for nonhomogeneous Klein-Gordon-Maxwell equations on ![]() ![]() |
[23] | Wei C Q, Li A R. Existence and multiplicity of solutions for Klein-Gordon-Maxwell systems with sign-changing potentials. Adv Differ Equ, 2019, 72: 1-11 |
[24] | 段誉, 孙歆. 带有凹凸非线性项的 Klein-Gordon-Maxwell 系统解的存在性和多重性. 应用数学, 2022, 35(1): 120-127 |
Duan Y, Sun X. Existence and multiplicity of solutions for Klein-Gordon-Maxwell systems with concave-convex nonlinearities, Mathmatic Applicata, 2022, 35(1): 120-127 | |
[25] | 谢苏静, 黄文念. 一类 Klein-Gordon-Maxwell 方程无穷多解的存在性. 高校应用数学学报, 2018, 33A(3): 315-323 |
Xie S J, Huan W N. Existence of infinitely many solutions for a Klein-Gordon-Maxwell system. Applied Mathematics-A Journal of Chinese Universities, 2018, 33A(3): 315-323 | |
[26] | 陈丽珍, 李安然, 李刚. 带有次线性项和超线性项的 Klein-Gordon-Maxwell 系统多重解的存在性. 数学物理学报, 2017, 37A(4): 663-670 |
Chen L Z, Li A R, Li G. Existence of infinitely many solutions to a class of Klein-Gordon-Maxwell system with superlinear and sublinear terms. Acta Math Sci, 2017, 37A(4): 663-670 | |
[27] |
Sun M Z, Su J B, Zhao L G. Solutions of a Schr![]() ![]() |
[28] | Wang Z Q. Nonlinear boundary value problems with concave nonlinearitiesnear the origin. Nonlinear Differ Equ Appl, 2001, 8: 15-33 |
[29] | Rabinoeitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providencn, RI: American Mathematical Society, 1986 |
[30] |
Liu Z L, Wang Z Q. On Clark's theorem and its applications to partially sublinear problems. Ann Inst H Poincar![]() ![]() |
[31] |
Sun J T, Chen H B, Nieto J J. On ground state solutions for some non-autonomous Schr![]() ![]() |
[1] | 孙歆, 段誉. 次线性 Klein-Gordon-Maxwell 系统解的多重性[J]. 数学物理学报, 2024, 44(5): 1205-1215. |
[2] | 靳振峰, 孙红蕊, 张为民. Kirchhoff 型方程正规化解的多重性及渐近行为[J]. 数学物理学报, 2024, 44(4): 871-884. |
[3] | 段雪亮, 吴晓凡, 魏公明, 杨海涛. 带临界指数的Kirchhoff型线性耦合方程组正解的多重性[J]. 数学物理学报, 2024, 44(3): 699-716. |
[4] | 付培源, 夏阿亮. 一类非局部临界椭圆方程组高能量解的多重性[J]. 数学物理学报, 2024, 44(1): 101-119. |
[5] | 熊晨, 高琦. 一类耦合Ginzburg-Landau系统的局部极小解[J]. 数学物理学报, 2023, 43(2): 321-340. |
[6] | 李安然,樊丹丹,魏重庆. 临界零质量Kirchhoff型方程的解及其渐近行为[J]. 数学物理学报, 2022, 42(6): 1729-1743. |
[7] | 张鹏辉,韩志清. 一类带临界指标的非自治Kirchhoff型方程非平凡解的存在性[J]. 数学物理学报, 2022, 42(5): 1424-1432. |
[8] | 段誉,孙歆. 渐近线性Klein-Gordon-Maxwell系统正解的存在性[J]. 数学物理学报, 2022, 42(4): 1103-1111. |
[9] | 尚旭东,张吉慧. 一类非线性Choquard方程基态解的存在性[J]. 数学物理学报, 2022, 42(3): 749-759. |
[10] | 王振国. 依赖参数的2![]() |
[11] | 张伟强,赵培浩. 分数阶Choquard方程正解的存在性、多重性和集中现象[J]. 数学物理学报, 2022, 42(2): 470-490. |
[12] | 贾小尧,娄振洛. Hénon型椭圆系统多个非径向对称解的存在性[J]. 数学物理学报, 2021, 41(3): 723-728. |
[13] | 任晶,翟成波. 基于变分法的回火分数阶脉冲微分系统分析[J]. 数学物理学报, 2021, 41(2): 415-426. |
[14] | 姚旺进. 基于变分方法的脉冲微分方程耦合系统解的存在性和多重性[J]. 数学物理学报, 2020, 40(3): 705-716. |
[15] | 李容星,王文清,曾小雨. 带椭球势阱的Kirchhoff型方程的变分问题[J]. 数学物理学报, 2019, 39(6): 1323-1333. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 57
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|