数学物理学报 ›› 2025, Vol. 45 ›› Issue (2): 584-603.
收稿日期:
2024-06-18
修回日期:
2024-09-24
出版日期:
2025-04-26
发布日期:
2025-04-09
通讯作者:
庞善起
E-mail:pangshanqi@263.net;1277686343@qq.com;wangjing19@126.com
作者简介:
路又维,E-mail: 基金资助:
Shanqi Pang*(),Youwei Lu(
),Jing Wang(
)
Received:
2024-06-18
Revised:
2024-09-24
Online:
2025-04-26
Published:
2025-04-09
Contact:
Shanqi Pang
E-mail:pangshanqi@263.net;1277686343@qq.com;wangjing19@126.com
Supported by:
摘要:
具有重复行的正交表已经得到广泛应用, 它可以降低试验的复杂性和成本, 同时提高试验结果的可靠性. 具有重复行的最优正交表有更好的统计性质和组合结构, 然而目前对此类的最优正交表知之甚少. 该文主要研究各种水平变换和列变换构造具有重复行的最优正交表的方法. 首先介绍了一种独立列构造饱和的正交表的方法, 然后利用各种水平变换和列变换提出了具有重复行的最优正交表和
中图分类号:
庞善起,路又维,王静. 具有重复行的强度 2 的最优正交表的构造[J]. 数学物理学报, 2025, 45(2): 584-603.
Shanqi Pang,Youwei Lu,Jing Wang. The Construction of Optimal Orthogonal Arrays with Repeated Rows and Strength 2[J]. Acta mathematica scientia,Series A, 2025, 45(2): 584-603.
[1] | 庞善起, 张应山. 正交表的乘法. 数学物理学报, 2007, 27A(3): 568-576 |
Zhang Y S. Multiplication of orthogonal arrays. Acta Math Sci, 2007, 27A(3): 568-576 | |
[2] | Hedayat A S, Sloane N J A, Stufken J. Orthogonal Arrays:Theory and Applications. New York: Springer, 1999 |
[3] | Rao C R. Factorial experiments derivable from combinatorial arrangements of arrays. J R Stat Soc, 1947, 9(1): 128-139 |
[4] | 罗纯. 广义差集矩阵理论和正交表构造. 北京: 科学出版社, 2015 |
Luo C. Generalized Difference Set Matrix Theory and Orthogonal Array Construction. Beijing: Science Press, 2015 | |
[5] | 茆诗松, 周纪芗, 陈颖. 试验设计. 北京: 中国统计出版社, 2004 |
Zhou J X, Chen Y. Experiment Design. Beijing: China Statistics Press, 2004 | |
[6] | Arnaud L, Cerf N J. Exploring pure quantum states with maximally mixed reductions. Phys Rev A, 2013, 87(1): Article 012319 |
[7] |
Kim H J, Lee Y. ![]() ![]() |
[8] | 聂嘉乐, 余旌胡. 一类受随机扰动的动态优化问题的环境检测与响应. 数学物理学报, 2022, 42A(5): 1560-1574 |
Nie J L, Yu J H. Environmental detection and response to a kind of dynamic optimization problem subjected to random disturbance. Acta Math Sci, 2022, 42A(5): 1560-1574 | |
[9] |
Du J, Fu S J, Qu L J, et al. New constructions of ![]() ![]() ![]() ![]() |
[10] | Aggarwal M L, Budhraja V. On construction of some new symmetric and asymmetric orthogonal arrays. JDMSC, 2002, 5(3): 215-225 |
[11] | Bierbrauer J. Introduction to Coding Theory. Boca Raton, FL: Chapman and Hall/CRC, 2016 |
[12] | Stinson D R. Combinatorial Designs. New York: Springer, 2004 |
[13] | Antonio J D S, Andrea L, Fabio Z. Symplectic duality between complex domains. Monatsh Math, 2010, 160(4): 403-428 |
[14] |
管乾清, 开晓山, 朱士信. ![]() ![]() ![]() doi: 10.3969/j.issn.0372-2112.2017.06.027 |
Kai X S, Zhu S X. Hermitian self-orthogonal constacyclic codes over ![]() ![]() ![]() doi: 10.3969/j.issn.0372-2112.2017.06.027 |
|
[15] | 冯克勤, 陈豪. 量子纠错码. 北京: 科学出版社, 2010 |
Chen H. Quantum Error Correction Codes. Beijing: Science Press, 2010 | |
[16] | Qin H, Li D. Connection between uniformity and orthogonality for symmetrical factorial designs. J Stat Plan Infer, 2006, 136(8): 2770-2782 |
[17] | Sun F S, Liu M Q, Lin D K J. Construction of orthogonal Latin hypercube designs. Biometrika, 2009, 96(4): 971-974 |
[18] | Mukerjee R, Sun F S, Tang B. Nearly orthogonal arrays mappable into fully orthogonal arrays. Biometrika, 2014, 101(4): 957-963 |
[19] |
Pang S Q, Wang X N, Wang J, et al. Construction and count of ![]() |
[20] | Fang K T, Li R Z, Sudjianto A. Design and Modeling for Computer Experiments. Boca Raton, FL: Chapman and Hall/CRC, 2005 |
[21] | Ji L J, Yin J X. Constructions of new orthogonal arrays and covering arrays of strength three. J Comb Theory Ser A, 2010, 117(3): 236-247 |
[22] | Goyeneche D, Bielawski J, Zyczkowski K. Multipartite entanglement in heterogeneous systems. Phys Rev A, 2016, 94(1): Article 012346 |
[23] | Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390: 575-579 |
[24] | Goyeneche D, Raissi Z, Martino S D, et al. Entanglement and quantum combinatorial designs. Phys Rev A, 2018, 97(6): Article 062326 |
[25] | Goyeneche D, Zyczkowski K. Genuinely multipartite entangled states and orthogonal arrays. Phys Rev A, 2014, 90(2): Article 022316 |
[26] | Jozsa R, Linden N. On the role of entanglement in quantum-computational speed-up. Proc R Soc A, 2003, 459(2036): 2011-2032 |
[27] | Li M, Wang Z, Wang J, et al. The norms of Bloch vectors and classification of four qudits quantum states. Europhysic Letters, 2019, 125(2): Article 20006 |
[28] | Wang Y, Fang K T. A note on uniform distribution and experimental design. Kexue Tongbao, 1981, 26(6): 485-489 |
[29] | 周永道, 刘幼妹. 非同构饱和正交设计的最小矩混杂优势准则. 数学物理学报, 2009, 29A(5): 1145-1152 |
Zhou Y D, Liu Y M. Minimum moment aberration majorization in non-isomorphic asymmetrical saturated designs. Acta Math Sci, 2009, 29A(5): 1145-1152 | |
[30] | Schoen E D, Eendebak P T, Man M V M. Complete enumeration of pure-level and mixed-level orthogonal arrays. J Comb Des, 2010, 18(2): 123-140 |
[31] | Pang S Q, Chen L Y. Generalized Latin matrix and construction of orthogonal arrays. Acta Math Appl Sin, 2017, 33(4): 1083-1092 |
[32] |
Colbourn C J, Stinson D R, Veitch S. Constructions of optimal orthogonal arrays with repeated rows. Discrete Math, 2019, 342(9): 2455-2466
doi: 10.1016/j.disc.2019.05.021 |
[33] | Stinson D R. Bounds for orthogonal arrays with repeated rows. Bull Inst Combin Appl, 2019, 85: 60-73 |
[34] | Plackett R L, Burman J P. The design of optimum multifactorial experiments. Biometrika, 1946, 33(4): 305-325 |
[35] |
Bird E M, Street D J. ![]() ![]() |
[36] | Pang S Q, Zhang X, Lin X, et al. Two and three-uniform states from irredundant orthogonal arrays. npj Quantum Information, 2019, 5(52): 1-10 |
[37] | Fisher R A. An examination of the different possible solutions of a problem in incomplete blocks. Ann Eugen, 1940, 10: 52-75 |
[38] | Johnson S M. A new upper bound for error-correcting codes. IRE Trans, 1962, 8: 203-207 |
[39] |
Ray-Chaudhuri D K, Wilson R M. On ![]() |
[40] |
Wilson R M. Inequalities for ![]() |
[41] |
Wilson R M. Incidence matrices of ![]() |
[42] | Cheng C S. Orthogonal arrays with variable numbers of symbols. Ann Stat, 1980, 8(2): 447-453 |
[43] | Yu Z, Peng Z, Kristofer J. Optimal compound orthogonal arrays and single arrays for robust parameter design experiments. Technometrics, 2007, 49(4): 440-453 |
[44] |
El-Zanati S, Jordonh H, Seelinger G, et al. The maximum size of a partial ![]() |
[45] | Lin C Y. Optimal blocked orthogonal arrays. J Stat Plan Infer, 2014, 145: 139-147 |
[46] | Du J, Chen Z Y, Chen G Z, et al. Constructions of optimal 2-level orthogonal arrays with repeated rows. Adv Math Commun, 2025, 19(2): 379-396 |
[47] | Stanton R G, Sprott D A. Block intersections in balanced incomplete block designs. Can Math Bull, 1964, 7, 539-548 |
[48] | Mann H B. A note on balanced incomplete block designs. Ann Math Stat, 1969, 40: 679-680 |
[49] | Montgometry D C. Design and Analysis of Experiments. New York: Springer Verlag, 1976 |
[50] |
Culus J F, Toulouse S. How far from a worst solution a random solution of a ![]() |
[51] | Mukerjee R, Qian P Z G, Wu C F J. On the existence of nested orthogonal arrays. Discrete Math, 2008, 308(20): 4635-4642 |
[52] |
Du J, Wen Q Y, Zhang J, et al. New construction of symmetric orthogonal arrays of strength ![]() |
[53] | Mukerjee R, Wu C F J. On the existence of saturated and nearly saturated asymmetrical orthogonal arrays. Ann Stat, 1995, 23(6): 2102-2115 |
[54] | Zhang Y L. On schematic orthogonal arrays of strength two. Ars Comb, 2009, 91: 147-163 |
[55] | Pang S Q, Yan R, Li S. Schematic saturated orthogonal arrays obtained by using the contractive replacement method. Commun Stat-Theor M, 2017, 46(18): 8913-8924 |
[56] | Boyvalenkov P, Marinova T, Stoyanova M. Nonexistence of a few binary orthogonal arrays. Discrete Appl Math, 2017, 217(2): 144-150 |
[57] | Pang S Q, Zhang X, Zhang Q J. The hamming distances of saturated asymmetrical orthogonal arrays with strength 2. Commun Stat-Theor M, 2020, 49(16): 3895-3910 |
[58] | 杨子胥. 正交表的构造. 济南: 山东人民出版社, 1978 |
The Construction of Orthogonal Array. Jinan: Shandong People's Publishing House, 1978 | |
[59] | 庞善起. 正交表的构造方法及其应用. 成都: 电子科技大学出版社, 2004 |
The Construction Method and Application of Orthogonal Array. Chengdu: University of Electronic Science and Technology of China Press, 2004 |
[1] | 庞善起; 张应山. 正交表的乘法[J]. 数学物理学报, 2007, 27(3): 568-576. |
[2] | 马长兴 张润楚. 抽样设计偏差的大样本性质[J]. 数学物理学报, 1999, 19(4): 439-447. |
[3] | 马长兴. 从设计到抽样[J]. 数学物理学报, 1999, 19(2): 149-153. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 71
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 25
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|