数学物理学报 ›› 2025, Vol. 45 ›› Issue (2): 576-583.

• • 上一篇    下一篇

奇异摄动 Volterra 积分微分方程参数一致的数值方法

刘利斌*(),廖仪戈(),隆广庆()   

  1. 南宁师范大学应用数学中心 南宁 530100
  • 收稿日期:2022-10-10 修回日期:2024-10-06 出版日期:2025-04-26 发布日期:2025-04-09
  • 通讯作者: 刘利斌 E-mail:liulibin969@163.com;lyg199600@163.com;longgq@amss.ac.cn
  • 作者简介:廖仪戈,E-mail: lyg199600@163.com;|隆广庆,E-mail: longgq@amss.ac.cn
  • 基金资助:
    国家自然科学基金(12361087);国家自然科学基金(12261062)

A Parameter-Uniform Numerical Method for a Singularly Perturbed Volterra Integro-Differential Equation

Libin Liu*(),Yige Liao(),Guangqing Long()   

  1. Center for Applied Mathematics of Guangxi, Nanning Normal University, Nanning 530100
  • Received:2022-10-10 Revised:2024-10-06 Online:2025-04-26 Published:2025-04-09
  • Contact: Libin Liu E-mail:liulibin969@163.com;lyg199600@163.com;longgq@amss.ac.cn
  • Supported by:
    NSFC(12361087);NSFC(12261062)

摘要:

针对一类奇异摄动 Volterra 积分微分方程, 在 Vulanović-Bakhvalov 网格上构造了一个一阶参数一致收敛的有限差分格式. 进一步, 基于 Richardson 外推技术, 将数值格式的收敛阶从 O(N1) 提高到 O(N2), 其中 N 是网格剖分数. 最后, 数值实验证明了数值方法的有效性.

关键词: 奇异摄动, Volterra 积分微分方程, Richardson 外推, Vulanovi?-Bakhvalov 网格

Abstract:

A singularly perturbed Volterra integro-differential equation is considered. The problem is discretized by using a simple first-order finite difference scheme on a Vulanović-Bakhvalov mesh, the accuracy of which is first-order uniformly convergent with respect to the perturbation parameter ε. Furthermore, based on the Richardson extrapolation technique, the ε-uniform accuracy of the presented approximation scheme can be improved from O(N1) to O(N2), where N is the number of mesh intervals. Finally, the theoretical finds are illustrated by two numerical experiments.

Key words: singularly perturbed, Volterra integro-differential equation, Richardson extrapolation, Vulanovi?-Bakhvalov mesh

中图分类号: 

  • O241.8