[1] |
Berestycki H, Diekmann O, Nagelkerke C J, et al. Can a species keep pace with a shifting climate? B Math Biol, 2009, 71(2): 399-429
doi: 10.1007/s11538-008-9367-5
pmid: 19067084
|
[2] |
Berestycki H, Fang J. Forced waves of the Fisher-KPP equation in a shifting environment. J Differ Equations, 2018, 264(3): 2157-2183
|
[3] |
Berestycki H, Rossi L. Reaction-diffusion equations for population dynamics with forced speed I-The case of the whole space. Discrete Cont Dyn-A, 2008, 21(1): 41-67
|
[4] |
Fang J, Peng R, Zhao X Q. Propagation dynamics of a reaction-diffusion equation in a time-periodic shifting environment. J Math Pure Appl, 2021, 147: 1-28
|
[5] |
Gonzalez P, Neilson R P, Lenihan J M, et al. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecol Biogeogr, 2010, 19(6): 755-768
|
[6] |
Gu Y M, Shi Z X. Existence of forced waves for a 2-D lattice differential equation in a time-periodic shifting habitat. Discrete Cont Dyn-B, 2023, 28(5): 3307-3321
|
[7] |
Guo J S, Wu C H. Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system. Osaka J Math, 2008, 45(2): 327-346
|
[8] |
Hu C B, Li B T. Spatial dynamics for lattice differential equations with a shifting habitat. J Differ Equations, 2015, 259(5): 1967-1989
|
[9] |
Hu H J, Zou X F. Existence of an extinction wave in the Fisher equation with a shifting habitat. P Am Math Soc, 2017, 145(11): 4763-4771
|
[10] |
Kopell N, Ermentrout G B, Williams T L. On chains of oscillators forced at one end. Siam J Appl Math, 1991, 51(5): 1397-1417
|
[11] |
Laplante J P, Erneux T. Propagation failure in arrays of coupled bistable chemical reactors. J Phys Chem, 1992, 96(12): 4931-4934
|
[12] |
Li B T, Bewick S, Shang J, et al. Persistence and spread of a species with a shifting habitat edge. SIAM J Appl Math, 2014, 74(5): 1397-1417
|
[13] |
Meng Y L, Yu Z X, Zhang S Q. Spatial dynamics of the lattice Lotka-Volterra competition system in a shifting habitat. Nonlinear Anal-Real, 2021, 60: Article 103287
|
[14] |
Pang L Y, Wu S L. Propagation dynamics for lattice differential equations in a time-periodic shifting habitat. Z Angew Math Phys, 2021, 72(3): Article 93
|
[15] |
Qiao S X, Li W T, Wang J B. Asymptotic propagations of a nonlocal dispersal population model with shifting habitats. Eur J Appl Math, 2022, 33(4): 701-728
|
[16] |
Taylor J E, Cahn J W, Handwerker C A. Overview No.98 I-Geometric models of crystal growth. Acta Metall Mater, 1992, 40(7): 1443-1474
|
[17] |
Verhulst F. Nonlinear Differential Equations and Dynamical Systems. Berlin: Springer-Verlag, 1996
|
[18] |
Wang J B, Zhao X Q. Uniqueness and global stability of forced waves in a shifting environment. P Am Math Soc, 2019, 147(4): 1467-1481
|
[19] |
Wu C F, Xu Z Q. Propagation dynamics in a heterogeneous reaction-diffusion system under a shifting environment. J Dyn Differ Equ, 2023, 35(1): 493-521
|
[20] |
Wu J H, Zou X F. Traveling wave fronts of reaction-diffusion systems with delay. J Dyn Differ Equ, 2001, 13: 651-687
|
[21] |
Yang Y, Wu C F, Li Z X. Forced waves and their asymptotics in a Lotka-Volterra cooperative model under climate change. Appl Math Comput, 2019, 353: 254-264
|