[1] |
Bartsch T, Wang Z Q. Existence and multiplicity results for superlinear elliptic problems on R . Comm Partial Differential Equations, 1995, 20(9/10): 1725-1741
|
[2] |
Bartsch T, Pankov A, Wang Z Q. Nonlinear Schrödinger equations with steep potential well. Commun Contemp Math, 2001, 3(4): 549-569
|
[3] |
Jiang Y, Zhou H S. Schrödinger-Poisson system with steep potential well. J Differential Equations, 2011, 251(3): 582-608
|
[4] |
Sun J, Chu J, Wu T F. Existence and multiplicity of nontrivial solutions for some biharmonic equations with -Laplacian. J Differential Equations, 2017, 262(2): 945-977
|
[5] |
Sun J, Wu T F. Ground state solutions for an indefinite Kirchhoff type problem with steep potential well. J Differential Equations, 2014, 256(4): 1771-1792
|
[6] |
Alves C O, Figueiredo G M. Nonlinear perturbations of a periodic Kirchhoff equation in R . Nonlinear Anal, 2012, 75(5): 2750-2759
|
[7] |
Wang J, Tian L, Xu J, Zhang F. Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J Differential Equations, 2012, 253(7): 2314-2351
|
[8] |
Figueiredo G M. Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument. J Math Anal Appl, 2013, 401(2): 706-713
|
[9] |
Kirchhoff G. Mechanik. Teubner: Leipzig, 1883
|
[10] |
Azzollini A. The elliptic Kirchhoff equation in R perturbed by a local nonlinearity. Differ Integral Equ, 2012, 25(5/6): 543-554
|
[11] |
Bernstein S. Sur une classe d'équations fonctionnelles aux dérivées partielles. Bull Acad Sci URSS Sér Math, 1940, 4(1): 17-26
|
[12] |
Pohožaev S I. A certain class of quasilinear hyperbolic equations. Mat Sb, 1975, 96(138): 152-166
|
[13] |
Lions J L. On some questions in boundary value problems of mathematical physics. North-Holland Math Stud, 1978, 30: 284-346
|
[14] |
He X M, Zou W M. Ground states for nonlinear Kirchhoff equations with critical growth. Ann Mat Pura Appl, 2014, 193(2): 473-500
|
[15] |
Wang J, Tian L, Xu J, Zhang F. Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J Differential Equations, 2012, 253(7): 2314-2351
|
[16] |
Chen C, Kuo Y, Wu T. The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J Differential Equations, 2011, 250(4): 1876-1908
|
[17] |
Huang Y, Liu Z, Wu Y. On Kirchhoff type equations with critical Sobolev exponent. J Math Anal Appl, 2018, 462(1): 483-504
|
[18] |
Naimen D. The critical problem of Kirchhoff type elliptic equations in dimension four. J Differential Equations, 2014, 257(4): 1168-1193
|
[19] |
Luo L P, Tang C L. Existence and concentration of ground state solutions for critical Kirchhoff-type equation with steep potential well. Complex Var Elliptic Equ, 2022, 67(7): 1756-1771
|
[20] |
Zeng L, Huang Y S. A remark on Kirchhoff-type equations in R involving critical growth. Complex Var Elliptic Equ, 2022, 67(4): 789-806
|
[21] |
Willem M. Minimax Theorems. Boston: Birkhäuser, 1996
|
[22] |
Brézis H, Nirenberg L. Positive soluticns of nonlinear elliptic equations involving critical Sobolev exponent. Comm Pure Appl Math, 1983 36(4): 437-477
|
[23] |
Li G B, Ye H Y. Existence of positive solutions for nonlinear Kirchhoff type problems in R with critical Sobolev exponent. Math Meth Appl Sci, 2014, 37(16): 2570-2584
|
[24] |
Brézis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88(3): 486-490
|